A method is revealed that teaches that a UV or near-UV lighting source inside a lighting fixture can be used to fulfil two functions; (1) First, to disinfect room air of bioaerosols and remove certain air-borne chemicals; and then (2) To excite white or other color phosphor compounds, so that the final output of the lighting fixture is that of visible non-UV light. The method results in a minimal increase in operating energy costs over that of a standard LED light fixture, but with the added benefit of providing air disinfection and purification.