USE OF HGMA-TARGETED PHOSPHOROTHIOATE DNA APTAMERS TO SUPPRESS CARCINOGENIC ACTIVITY AND INCREASE SENSITIVITY TO CHEMOTHERAPY AGENTS IN HUMAN CANCER CELLS
Elevated high mobility group A (HMGA) protein expression in human cancer cells, and especially human pancreatic cancer cells, is correlated with resistance to the chemotherapy agent gemcitabine. The present invention uses HMGA-targeted AT-rich phosphorothioate DNA (AT-sDNA) aptamers to suppress HMGA carcinogenic activity. Cell growth of human pancreatic cancer cells (AsPC-1 and Miapaca-2) transfected with AT-sDNA were monitored after treatment with gemcitabine. Significant increases in cell death in AT-sDNA transfected cells compared to non AT-rich sDNA treated cells were observed in both cell lines. The data indicates the potential use of HMGA targeted DNA aptamers to enhance chemotherapy efficacy in human cancer treatment, and in particular human pancreatic cancer treatment.