A fluidic connection assembly and methods for quickly connecting or disconnecting a tube to a port by hand and without the use of tools. A body is adapted to receive a tube therethrough, and may have at least two sides which are hinged. Each of the hinged sides has corresponding latching portions or projections located near a lower end of the body. These projections are adapted to fit into a port or other fitting and be securely held in place. The assembly may include a tube extending through a body and through a spring located between the end of the body and the end of the tube, whereby the spring exerts a force directly or indirectly against the end of the tube and against the body, thus holding the tubing securely and sealingly engaged in the port when the assembly is connected. The body may further comprise an additional body or an adapter, and/or a cap and latch. A second spring may be used to push a projecting member into a groove or notch of an adapter when an end of the adapter is inserted into one end of the latch or the body. The fluidic connection assembly is useful in analytical instrument systems, such as for in vitro applications and/or in high pressure applications, among other things, and may be used in methods for connecting, or disconnecting, tubing or a fluidic connection assembly from a port or other fitting or connection.