In the present disclosure, conservation of an implantable medical device power supply of is facilitated by controlling the power consumption of the device's processing component. The power supplied to the processing component is controlled to enable processing of received events as a function of predetermined criteria rather than the actual occurrence of the events which is frequent, but irregular. Accordingly, the need for the processing component to start and stop (and thereby be fully powered on each start) with receipt of each event is obviated thereby maintaining the power consumption of the processing component and increasing longevity of the device. Event data associated with received events is stored in an event queue and subsequently retrieved and transmitted for processing based on predetermined criteria. The power supplied during an idle state of the processing component may be reduced in relation to the power supplied during a wake up state.