With its unique composite network structure of micro-cavities and microfilaments, a material can mimic the skin barrier function: capable of shielding contamination, moisture absorption, moisture retention, breathability, pliability and adhesion. It is capable of absorbing wound exudates to facilitate rapid, non-invasive autolytic debridement and bi-directional regulation to ensure sufficient drainage, but also targetedly and compartmentally retaining exudates in the dressing to maintain a semi-occlusive local environment with a physiological moisture balance, which is conducive to intercellular and intracellular signal transduction, promoting migration of autologous fibroblasts and epithelial cells, regeneration of granulation tissue and epithelium, accelerating physiological healing and restoration, and reducing recurrence. It has been clinically proven to accelerate the healing of acute skin injuries and chronic ulcer wounds, achieve an excellent healing quality, and avoid/minimize traumatic skin grafting so as to reduce the pain and scarring of patients, and restore the physiological function and appearance of the body.