Impaired intraocular blood flow within vascular beds in the human eye are associated with certain ocular diseases including, for example, glaucoma, diabetic retinopathy and age-related macular degeneration. A reliable method to quantify blood flow in one or more of the various intraocular vascular beds could provide insight into the vascular component of ocular disease pathophysiology. Using ultrahigh-speed optical coherence tomography (OCT), a new 3D angiography algorithm called split-spectrum amplitude-decorrelation angiography (SSADA) was developed for imaging microcirculation within different intraocular regions including, for example, the ocular disc, the temporal ellipse, the peripapillary retina, the peripapillary choroid, the macular retina, the macular choroid, the fovea avascular zone, and the area of non-perfusion. As described herein, a method to quantify SSADA results was developed and used to detect perfusion changes in early stage ocular disease. Associated embodiments relating to methods for quantitatively measuring blood flow at various intraocular vasculature sites, systems for practicing such methods, and use of such methods and systems for diagnosing certain ocular diseases are herein described.Une circulation sanguine intraoculaire altérée dans les lits vasculaires dans l'œil humain est associée à certaines maladies oculaires comprenant, par exemple, le glaucome, la rétinopathie diabétique et la dégénérescence maculaire liée à l'âge. Un procédé fiable pour quantifier la circulation sanguine dans un ou plusieurs des différents lits vasculaires intraoculaires pourrait donner des informations sur la composante vasculaire de la physiopathologie des maladies oculaires. En utilisant la tomographie en cohérence optique (OCT) à très haute vitesse, un nouvel algorithme d'angiographie 3D appelé angiographie à décorrélation d'amplitude à spectre fractionné (Split-Spectrum Amplitude-Decorrelation Angiography : SSADA) a été développé pour l'imagerie de la mi