Wearing a face mask or a filtering facepiece respirator, especially in hot weather for more than one hour, causes discomfort. But, in a viral pandemic, a barrier to filter inhaled and exhaled air is necessary to protect against airborne pathogens. The sensations of heat abstraction, that is, coolness and cold, can be captured by the rational design of optimized molecules. The topical application of these molecules alleviates the discomfort of wearing a face mask covering. Several entities were identified by synthesis and experiment as having the ideal properties for achieving this purpose. The preferred embodiments are certain 1-diisopropyl-phosphinoyl-alkanes described as DIPA-1-7, DIPA-1-8, and DIPA-1-9, collectively referred to herein as “DIPA compounds.” The applicant found that topical delivery of DIPA compounds to the facial skin, especially to the surface of the external nares (nostrils), alleviates face mask discomfort. From these studies, I hypothesize that the absence of cool air dynamics about the nostrils causes face mask discomfort, not just static heat accumulation or excess humidity. The present discovery pertains to pharmaceutical compositions comprising such compounds, and the use of such compounds and compositions for relieving face mask discomfort.