An imaging system for imaging an object. More specifically, an imaging system enabling depth sectioned fluorescence imaging in a turbid medium, such as human or animal tissue, to substantially minimize the excitation radiation from reaching the detection beam path. The imaging system includes an arrangement of the excitation radiation source wherein the optical axis of the source is inclined relative to the optical axis of the camera, the optical plane of the source and the optical plane of the object are subject to a Scheimpflug condition, and the angle of inclination of the source is selected such that the excitation radiation incident upon the object is reflected to minimize excitation radiation from reaching the detection beam path.