An ophthalmologic apparatus, includes: a first concave mirror and a second concave mirror having a concave surface-shaped first reflective surface and a concave surface-shaped second reflective surface; an SLO optical system configured to project light from an SLO light source onto a subject's eye via the first concave mirror and the second concave mirror, and to detect returning light from the subject's eye; a first optical scanner configured to deflect the light from the SLO light source to guide the light to the first reflective surface; a second optical scanner configured to deflect light reflected by the first reflective surface to guide the light to the second reflective surface; an OCT optical system including a third optical scanner, and configured to split light from an OCT light source into measurement light and reference light, to project the measurement light deflected by the third optical scanner onto the subject's eye, and to detect interference light between returning light of the measurement light from the subject's eye and the reference light; an optical path coupling member disposed between the first optical scanner and the first concave mirror, and combining an optical path of the SLO optical system and an optical path of the OCT optical system; and a correction unit configured to correct detection result of the interference light detected by the OCT optical system or an image formed based on the detection result.