Such an optical image measurement device is provided that is capable of acquiring a clear image even when the intensity of an interference light is low. A fundus oculi observation device 1 is configured to superimpose a signal light LS propagated through a fundus oculi Ef and a reference light LR propagated through a reference mirror 174 to generate an interference light LC, detect the interference light LC, and form an image of the fundus oculi Ef. The device 1 determines whether the intensity of a detection signal of the interference light LC is equal to or more than a predetermined threshold and, when determines that the intensity is less than the predetermined threshold, controls to increase the intensity of the detection signal of the interference light LC. The device 1 forms an image of the fundus oculi Ef based on the detection signal with the increased intensity.