Air management control systems and methods maintain and manage an intra-abdominal gas environment during laparoscopic surgery. The systems and methods locate a plurality of in vivo sensors to monitor different environmental conditions within the operative space insufflated with pressurized CO2, e.g., CO2 insufflation airflow velocity, CO2 pressure, aspiration airflow velocity, and at least one of humidity level, temperature, density of smoke/particulates, odors, and sound within the operative space. The systems and methods couple the plurality of in vivo sensors to a master controller. The master controller implements pre-programmed rules to generate control commands that govern the delivery of pressurized CO2 and aspiration pressure into and out of the operative space in response, at least in part, to the different environmental conditions monitored by the in vivo sensors.