您的位置: 首页 > 农业专利 > 详情页

BIOMIMETIC AMNIOTIC MEMBRANE NICHE FOR STEM CELLS
专利权人:
发明人:
Ahmed Al-Sayed Noha MOUSA,Mohamed Ahmed Sabreen KHALIL,El-Sayed Mohamed Nagwa EL-BADRI
申请号:
US15739172
公开号:
US20180291324A1
申请日:
2015.06.25
申请国别(地区):
US
年份:
2018
代理人:
摘要:
In this invention we propose a method to compose a stem cell culture niche platform, which is based on the use of the human amniotic membrane. Fluid dynamic, mechanical and topographic factors are additionally included in this niche to provide various factors essential for achieving an enhanced biomimetic microenvironment of the cultured stem cells. The amniotic membrane is mounted into various types of culture platforms to suit a wide range of research applications. The rich composition of the membrane with anti-inflammatory, anti microbial, matrix and adhesion molecules in addition to various growth factors suits its application as a complex biomimetic material. The platform includes micro channels to allow continuous exchange of media and creates a dynamic flow of the fluid surrounding the cells in an attempt to simulate the in vivo conditions in which the stem cell typically reaches its ideal proliferation, expansion or differentiation. The method disclosed herein supports a wide range of applications in stem cell research such as the investigation of the optimal conditions for stem cell culture and the effect of various medications and external factors. It can be also applied in investigating the effect of the amniotic membrane and the mechanical factors on the behavior of stem cells and cancer stem cells. Another model of the niche is proposed as an in vivo moldable and implantable carrier for delivering stem cell based therapies in a wide range of diseases especially those associated with aging or decline of specialized cell function such as diabetes, cardiovascular, neurological, hormonal, renal and liver disorders, cancer, and diseases associated with inflammation and disordered immunity. Furthermore, the lack of HLA molecules renders the membrane naïve to minimize rejection, which could be valuable for transplantation purposes.
来源网站:
中国工程科技知识中心
来源网址:
http://www.ckcest.cn/home/

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充