Disclosed are embodiments of methods and systems for predicting a health condition of a first human subject. The method comprises extracting a historical data including physiological parameters of second human subjects. Thereafter, a first distribution of a first physiological parameter is determined based on a marginal cumulative distribution of a rank transformed historical data. Further, a second distribution of a second physiological parameter is determined based on the first distribution and a first conditional cumulative distribution of the rank transformed historical data. Further, a latent variable is determined based on the first and the second distributions. Thereafter, one or more parameters of at least one bivariate distribution, corresponding to a D-vine copula, are estimated based on the latent variable. Further, a classifier is trained based on the D-vine copula. The classifier is utilizable to predict the health condition of the first human subject based on his/her physiological parameters.