The present invention relates, in general, to a system for analyzing tissue perfusion using the concentration of indocyanine green and a method of measuring the perfusion rate using the system and, more particularly, to a system for measuring tissue perfusion by injecting indocyanine green into a living body, detecting variation in the concentration of indocyanine green with the passage of time, and analyzing the detected variation, and a method of measuring the perfusion rate using the system. The present invention provides a method of measuring perfusion in a living body, which enables accurate measurement for respective regions in a wide range from a perfusion rate decreased to less than 10% of normal perfusion to a perfusion rate increased to greater than normal perfusion using the above-described mechanism of ICG in a living body, which cannot be conducted using the conventional technology.