An endoscope apparatus includes: a light source section configured to generate light of a first wavelength band emitted to a subject having hemoglobin, the light of the first wavelength band having spectral characteristics of a narrow band between a wavelength including a maximum value and a wavelength including a minimum value on light absorption characteristics of the hemoglobin in a red band of a visible wavelength band, the light source section also configured to generate light of a second wavelength band in which scattering characteristics in the subject and absorption characteristics of the hemoglobin are lower than in the light of the first wavelength band, the light of the second wavelength band including a wavelength band that is a wavelength longer than the light of the first wavelength band; an image pickup section configured to receive light from the subject irradiated with the light from the light source section to generate a first image pickup signal that is an image pickup signal of the subject corresponding to the light of the first wavelength band and a second image pickup signal that is an image pickup signal of the subject corresponding to the light of the second wavelength band; an image generation section configured to generate an observation image of the subject from the first image pickup signal and the second image pickup signal generated by the image pickup section; and a control section configured to control a value of a spectral product of at least one of the light of the first wavelength band and the light of the second wavelength band from the light source section to the image pickup section such that a first spectral product from the light source section to the image pickup section in the first wavelength band falls into a condition that is 50% to 150% of a second spectral product from the light source section to the image pickup section in the second wavelength band.