Power management methods, systems and circuitry are provided for efficiently energizing implanted stimulators. Efficiency is achieved by automatically adjusting the power- supply voltage of the stimulator channel so that the magnitude of the voltage of the current- sink or current-source providing the stimulation current is regulated within a narrow band just above the minimum acceptable level. Adjustment is done once in every cycle of the external high-frequency power source in order to achieve regulation with a very fine time resolution throughout each stimulation period. The power supply voltage is generated and adjusted by rectifying the high-frequency voltage of the secondary coil of a transcutaneous magnetic link by closing and opening a solid-state switch at appropriate times during positive half cycles for a current-sink, and during negative half-cycles for a current-source. The timing of switch closure and opening is dictated by a logic controller on the basis of two binary signals generated by two separate comparators, one of which comparing the voltage of the secondary coil with the generated power-supply voltage, and the other comparing the current-sink or current-source voltage with a reference voltage.