A method for fixation of a fracture of a bone having an intramedullary canal. An intramedullary rod is inserted into the intramedullary canal of the bone, wherein the intramedullary rod includes at least one proximal hole and at least one distal hole. Proximal and distal screws or pegs are inserted through the bone and through the proximal and distal holes in the rod, wherein the proximal and the distal screws or pegs are headless screws or pegs and are selected to have a size and are inserted through the proximal and distal holes in the rod such that the screws or pegs do not extend substantially beyond an exterior surface of the bone. Further described are apparatus and a kit for intramedullary fixation of fractures of bones of the hand. The methods, apparatus and kits of the invention are advantageously designed for percutaneous placement of intramedullary rods into the intramedullary canal of metacarpal or phalanx bones of the hand to stabilize fractures, and in particular in the proximal or middle phalanx bones of the hand. Rotational control is provided by locking screws or pegs through the rod, also placed percutaneously. Specific alignment jigs, drills, screw drivers and equipment may be used for placement of the rod and screws, wherein the rod and screws will stabilize the fracture.