In a radiation-pressure elastography technique for transmitting a ultrasound focused beam into a test object body and diagnosing the hardness thereof, it is required to consider high sensitivity and safety.In the present invention, the focused beam is transmitted to two positions as a means for displacing a tissue and exciting a shear wave. In addition, time control is performed in such a manner that a transmit beam serves as a burst-chirp signal, and ultrasound waves are transmitted and received while sweeping a transmit frequency. On this occasion, when the distance between the two focused points and the transmit frequency become integral multiple of the wavelength, two waves interfere with each other, thereby obtaining a large amplitude. Furthermore, when the transmit frequency becomes equal to a resonance frequency peculiar to the tissue, the amplitude also becomes larger. Accordingly, a small intensity of transmit waveform enhances sensitivity. In addition, transmission using the burst-chirp signal facilitates widening of a bandwidth of the transmit frequency, enabling usage of a frequency highly sensitive for a target measurement site. Optional number of focused points and arbitrary positions thereof allow a wide area to be covered.