The object of the present invention is to provide an emulsion composition that maintains emulsion stability even after high temperature process such as sterilization (heat resistance), shows a small change in particle size distribution between before and after heating, and maintains emulsion stability even under conditions where transformation of an oil phase component (for example, solidification or crystallization of the oil phase component due to temperature drop, or melting of the oil phase component due to temperature rise) occurs (temperature drop resistance), wherein the composition is easily handled during the production process. The object is solved by an oil-in-water emulsion composition containing solid particles, a predefined surfactant, an oil phase component, and an aqueous phase component, wherein the oil phase component includes a predefined oil component and the solid particles are distributed along the interface between the oil phase component and the aqueous phase component.