Techniques are generally described for low average power communications that can be used for communications between one or more bionic implants and/or one or more control units. Bionic implants and/or control units can be adapted to provide stimulus control and/or sensory or other feedback back from the bionic implants. An example system may include implant devices configured to exchange brief messages between other devices. Some examples may rely on coarse message timing that can be derived from a quartz tuning fork type of resonator. Carrier frequency control can be derived from an on-chip MEMS resonator adapted for high frequency use. An electrical stimulation power supply in each implant can be configured for use in nerve/muscle excitation and/or as a polarizing voltage source for the MEMS resonator. Various compensation mechanisms are described that can be used to compensate for the imprecise and/or temperature dependent frequency in the MEMS resonator.