Disclosed is a method for detecting and monitoring body sounds in humans and animals, in which bioacoustic sensors and analyzers that are mounted downstream are used for the stationary or mobile long-term monitoring of intensive care patients respiration, for example. The patients lung sounds are detected and stored along with measured data which are available right away especially for the early detection of diseases and acute disturbances. Adequately monitoring intestinal sounds makes it possible to evaluate peristalsis and detect mechanical/paralytic ileus early on. An early warning system for the clinical sector immediately generates signals allowing doctors and nurses to take rapid action in case of an emergency. The inventive apparatus requires a maximum of only three bioacoustic sensors (12), each of which can be fixed to a point of an object body (K) facing the object, a maximum of one sensor (14) for recording surrounding noises, a maximum of four separable channels (11) for recording and transmitting sound signals or sound data detected by the sensors (12), and devices for supplying power and forwarding, converting, storing, and displaying sequences of signals or data on or in a recorder or a computer unit (20).