A noninvasive, brain cooling method and device for cerebral cooling via a patient's nasopharyngeal cavity, is described. Thermal conductive nasal prongs are inserted into a nasal cavity and are cooled by thermoelectric cooling elements. An outward air driving fan inside the device drives a cold air current through the nasal and oral cavities. Heat transfer between the cold air and the surface of the nasal cavity cools the nasal cavity, which in turn, cools a patient's brain. Real-time temperature sensing data provides feedback for closed-loop cooling control.