您的位置: 首页 > 农业专利 > 详情页

DEPRESSION DIAGNOSIS METHOD USING HRV BASED ON NEURO-FUZZY NETWORK
专利权人:
发明人:
임준식,짱쩐씽,티안 쉐 웨이,이상홍,김용국,이행영,서현배
申请号:
KR1020110116069
公开号:
KR1013663480000B1
申请日:
2011.11.08
申请国别(地区):
KR
年份:
2014
代理人:
摘要:
PURPOSE: A depression diagnosis method is provided to check the status of mental health related to depression by measuring and analyzing an ECG(Electrocardiogram) signal and comparing an analyzed result with the result of a normal person. CONSTITUTION: A depression diagnosis method performs the following steps: a step of receiving an ECG signal(S200); a step of converting the ECG signal into HRV(Heart Rate Variability)(S300); a step of extracting frequency-domain characteristics and time-domain characteristics for the HRV(S400); a step of inputting the characteristics into NEWFM(Neuro-Network with a Weighted Fuzzy Membership function) and making the NEWFM learn BSWFM(Bounded Sum of Weighted Fuzzy Membership functions)(S500); and a step of easily diagnosing the status of depression by comparing with a predetermined value(S600). [Reference numerals] (S100) Step of providing affective contents stimulus including two or more modes to a user; (S200) Step of receiving an ECG signal during a preset time; (S300) Step of converting the received ECG signal into HRV; (S400) Step of extracting a frequency-domain characteristics and time-domain characteristics for the HRV; (S500) Step of inputting the extracted frequency-domain characteristics and time-domain characteristics into NEWFM and learning BSWFM of the weighted fuzzy membership function; (S600) Step of diagnosing the status of depression of the user by comparing the learned BSWFM of the weighted fuzzy membership function with a predetermined value본 발명은 우울증 진단을 위한 뉴로-퍼지 네트워크 기반의 데이터 분석 방법에 관한 것으로서, 보다 구체적으로는 (1) 미리 설정된 시간 동안, 심전도(Electrocardiogram, ECG) 신호를 수신하는 단계; (2) 상기 수신된 신호를 심박 변이도(Heart Rate Variability, HRV)로 변환하는 단계; (3) 상기 변환된 심박 변이도(HRV)에 대하여 주파수 영역 특징 및 시간 영역 특징을 추출하는 단계; 및 (4) 상기 추출된 주파수 영역 특징 및 시간 영역 특징을 각각, 가중 퍼지 소속 함수 기반의 퍼지 신경망(Neuro Network with a Weighted Fuzzy Membership function, NEWFM)에 입력하여, 가중 퍼지 소속 함수의 경계합(Bounded Sum of Weighted Fuzzy Membership functions, BSWFM)을 학습시키는 단계를 포함하는 것을 그 구성상의 특징으로
来源网站:
中国工程科技知识中心
来源网址:
http://www.ckcest.cn/home/

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充