PATTERN RECOGNITION SYSTEM FOR CLASSIFYING THE FUNCTIONAL STATUS OF PATIENTS WITH PULMONARY HYPERTENSION, INCLUDING PULMONARY ARTERIAL AND PULMONARY VASCULAR HYPERTENSION
A method employing pattern recognition techniques for identifying the functional status of patients with Pulmonary Hypertension is described. This method describes a process by which sets of cardiopulmonary exercise gas exchange variables are measured during rest, exercise and recovery and stored as unique data sets. The data sets are then analyzed by a series of feature extraction steps, yielding a multi-parametric index (MPIPH) which reflects the current functional status of a patient. The method also employs a description scheme that provides a graphical image that juxtaposes the measured value of MPI to a reference classification system. An additional description scheme provides a trend plot of MPI values measured on a patient over time to provide feedback to the physician on the efficacy of therapy provided to the patient. The method will enable physicians to gather, view, and track complicated data using well-understood visualization techniques to better understand the consequences of their therapeutic actions.