With regard to a conventionally known ocular fundus blood flow imaging device, that is, a device in which the ocular fundus is irradiated with an expanded laser beam, light reflected from the ocular fundus is imaged on a 2-dimensional image sensor as a laser speckle, and a change over time of the laser speckle generated on the image plane is measured for each pixel to thus display an image as a blood flow map, a wide viewing angle ocular fundus blood flow imaging device in which the measurement field of view is enlarged includes a projection system that turns a laser beam into a rectangular spot on the ocular fundus, and an observation system that images the rectangular spot on an image sensor placed on the corresponding image plane. It is a clinically excellent and user-friendly wide viewing angle ocular fundus blood flow imaging device that is obtained by improving the conventional device in various aspects by incorporating an observation optical system for carrying out positioning of the laser spot, a mechanism for monitoring the movement of an ocular fundus blood vessel image, etc.