Micro-fluidic "dead-end channel"-structure for pressure measurement within a fluid channel on the basis of the change of the volume of a trapped gas bubble
A device for detecting pressure and/or temperature changes in a fluid-channel and method thereof are disclosed. The device includes a main duct with an inlet and an outlet, a branch ductwork with a first branch end branching off the main duct downwards the inlet and with a second branch end discharging into the main duct upwards the outlet, and at least one dead-end channel with a first end that branches off the branch ductwork and a second closed end. The dead-end channel is adapted to trap a gas bubble within the dead-end channel when the device is primed or filled with a liquid fluid, wherein the gas bubble changes its size or position if a change in pressure or temperature occurs in the device.