Disclosed herein are nanoparticle-based plasmonic solutions to therapeutic applications employing titanium nitride (TiN) and other non-stoichiometric compounds as the plasmonic material. Current solutions are suboptimal because they require complex shapes, large particle sizes, and a narrow range of sizes, in order to achieve plasmonic resonances in the biological window. The nanoparticles discloses herein provide plasmonic resonances occurring in the biological window even with small sizes, simple shapes, and better size dispersion restrictions. Local heating efficiencies of such nanoparticles outperform currently used Au and transition metal nanoparticles. The use of smaller particles with simpler shapes and better heating efficiencies allows better diffusion properties into tumor regions, larger penetration depth of light into the biological tissue, and the ability to use excitation light of less power.