A method of draining cerebrospinal fluid from a human brain. The method includes providing a drainage catheter having a proximal end and a distal end. The drainage catheter has a plurality of openings formed therein. The plurality of openings includes a first opening, a second opening, and a most proximal opening. The second opening is disposed closer to the distal end than the first opening. A cross-sectional area of the first opening is less than a cross-sectional area of the second opening. The distal end of the drainage catheter is inserted into a human brain. Cerebrospinal fluid is drained from the human brain. The cerebrospinal fluid passes into the drainage catheter through the plurality of openings and out of the drainage catheter through the proximal end. A rate at which the cerebrospinal fluid passes through the drainage catheter is controlled to maintain intracranial pressure within a selected range.