Method and apparatus for improving image clarity and sensitivity in optical coherence tomography using dynamic feedback to control focal properties and coherence gating
Methods for optical imaging, particularly with optical coherence tomography, using a low coherence light beam reflected from a sample surface and compared to a reference light beam, wherein real time dynamic optical feedback is used to detect the surface position of a tissue sample with respect to a reference point and the necessary delay scan range. The delay is provided by a tilting/rotating mirror actuated by a voltage adjustable galvanometer. An imaging probe apparatus for implementing the method is provided. The probe initially scans along one line until it finds the tissue surface, identifiable as a sharp transition from no signal to a stronger signal. The next time the probe scans the next line it adjusts the waveform depending on the previous scan. An algorithm is disclosed for determining the optimal scan range.