Tau protein has a causative role in Alzheimers disease and multiple other neurodegenerative disorders exhibiting tau histopathology collectively termed tauopathies. The primary function of tau protein is to facilitate assembly and maintenance of microtubules in neuronal axons. In the disease process tau protein becomes modified, loses its affinity to microtubules and accumulates in the cell body where it forms aggregates. The large neurofibrillary tangles formed from tau protein assembled into filaments were thought to be the pathological structure of tau. However, more recent work indicates that smaller, soluble oligomeric forms of tau are best associated with neuron loss and memory impairment. Here, novel compositions of tau oligomers and novel mechanisms for tau oligomer nucleation, extension and termination are taught. Methods for producing and purifying these structures for the development of small molecule and immunotherapeutics as well as antibodies for biomarkers of neurodegenerative diseases are taught.