您的位置: 首页 > 农业专利 > 详情页

一种基于深度学习对膝关节摆动信号的分类方法
专利权人:
大连理工大学
发明人:
邱天爽,杨佳
申请号:
CN201910676157.9
公开号:
CN110313900A
申请日:
2019.25.07
申请国别(地区):
CN
年份:
2019
代理人:
摘要:
一种基于深度学习对膝关节摆动信号的分类方法,属于涉及医学及生理信号的分析与分类技术领域。采用中值滤波和小波变换的方式对脉搏波信号进行预处理,在时域和时频域方面对脉搏波信号进行分析,提取特征参数。利用深度学习的方法进行样本训练,获取建立预测模型进行分类识别,从而分类膝关节健康状况、不同膝关节疾病、严重程度等级及术后患者恢复等级。通过该模型设计可实际应用的膝关节内部信息分类识别装置。本发明的分类效果性能良好,对膝关节健康状况、不同膝关节疾病、严重程度等级及术后患者恢复状况的分类识别具有良好的准确度。本发明通过便携的膝关节摆动信号采集装置即可进行分类识别,有助于改善膝关节疾病判断、分类识别的便携性。
来源网站:
中国工程科技知识中心
来源网址:
http://www.ckcest.cn/home/

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充