In the commercial processes of using ethylene oxides for sterilization and fumigation over 99% of the ethylene oxide used is the process goes unreacted and is discharged from the sterilization/fumigation chamber. This process allows for the capture of ethylene oxide by using temperature, pressure, and both temperature and pressure to condense, separate and recycle the liquefied ethylene oxide from the non-condensable gases. The invention allows the user to recover then recycle the bulk of the exhausted ethylene oxide significantly increasing its utilization thus reducing the quantity of ethylene oxide required to be on-site. As secondary benefits, both feed stock and mitigation costs are significantly reduced.