The present invention relates to the application of beta zeolite in animal feed as a toxin binder. The beta zeolites, which contain 12 membered ring systems with Bronsted and Lewis acidic sites, have high binding efficacy against common toxins present in animal feed. This study aimed to evaluate the binding efficacy of The disclosed H beta zeolite (HBZ) has high binding efficiecy against major mycotoxins such as aflatoxin B1, ochratoxin A (OTA), zearalenone, mycophenolic acid, cyclopiazonic acid, Fumonisin B1, T-2 and patulin.