Real time three-dimensional heat-induced echo-strain imaging for monitoring high-intensity acoustic ablation produced by conformal interstitial and external directional ultrasound therapy applicators
A system for thermal treatment or ablation of tissue includes an ultrasonic thermal ablation probe, an ultrasonic three-dimensional imaging probe that captures an image from radio frequency image data obtained before the radio frequency image data is processed, a control system for multi-axis control of the imaging probes position, and an ultrasonic feedback mechanism that measures ultrasound echo strain to estimate heat-induced structural changes of an area surrounding the ultrasonic thermal ablation probe, from the image. The ultrasonic thermal ablation probe is either an interstitial ablator inserted into tissue, a natural cavity or a vessel to emit high intensity ultrasound energy to deposit thermal dose, or an external applicator that emits a directional high intensity ultrasound energy to deposit thermal dose via surface contact with tissue. The control system adjusts power levels of the ultrasonic thermal ablation probe based on the estimated heat-induced structural changes.