您的位置: 首页 > 中文期刊论文 > 详情页

AIGC视觉内容生成与溯源研究进展

作   者:
刘安安苏育挺王岚君李斌钱振兴张卫明周琳娜张新鹏张勇东黄继武俞能海
作者机构:
中国科学技术大学网络空间安全学院深圳大学电子信息与工程学院天津大学电气自动化与信息工程学院复旦大学计算机科学技术学院中国科学技术大学信息科学技术学院北京邮电大学网络空间安全学院
关键词:
人工智能内容生成(AIGC)生成图像溯源可控图像生成生成内容安全视觉内容生成
期刊名称:
中国图象图形学报
i s s n:
1006-8961
年卷期:
2024 年 06 期
页   码:
1535-1554
摘   要:
随着数字媒体与创意产业的快速发展,人工智能生成内容(artificial intelligence generated content, AIGC)技术以其在视觉内容生成中的创新应用而逐渐受到关注。本文旨在围绕AIGC视觉内容生成与溯源研究进展深入研讨。首先,针对图像生成技术进行探讨,从基于生成式对抗网络的传统方法出发,系统地分析了基于生成式对抗网络、自回归模型和扩散概率模型的最新进展。接着,深入探讨可控图像生成技术,突出了通过布局、线稿等附加信息以及基于视觉参考的方法来为创作者提供精确控制的技术现状。随着图像生成技术的革新和应用,生成图像的安全性问题逐渐浮现。而预先审核和过滤的技术手段已难以满足实际需求,故亟需实现生成内容的溯源来进行监管。因此,本文进而对生成图像溯源技术进行研讨,并聚焦水印技术在确保生成内容可靠性和安全性方面的应用。依据水印嵌入的流程节点,首先将现有的水印相关的生成图像溯源方法归为无水印嵌入的生成图像溯源、水印前置嵌入的生成图像溯源、水印后置嵌入的生成图像溯源以及联合生成的生成图像溯源并进行详细分析,然后介绍针对生成图像的水印攻击研究现状,最后对生成图像溯源技术进行总结和展望。鉴于视觉内容生成在质量和安全上的挑战,旨在为研究者提供一个视觉内容生成与溯源的系统研究视角,以促进数字媒体创作环境的安全与可信,并引导未来相关技术的发展方向。
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充