您的位置: 首页 > 中文期刊论文 > 详情页

基于图像识别的小麦品种分类研究

作   者:
何胜美李仲来何中虎
作者机构:
北京师范大学数学科学学院中国农业科学院作物科学研究所/国家小麦改良中心
关键词:
品种图像处理模式识别普通小麦
期刊名称:
中国农业科学
基金项目:
i s s n:
0578-1752
年卷期:
2005 年 38 卷 09 期
页   码:
1869-1875
摘   要:
基于数字图像分析,利用小麦籽粒的20个形态特征和12个颜色特征对来自中国4个地点7个春小麦品种共28个样本进行分类和识别。对于不同品种和地区的样本,分别利用逐步判别分析,选取显著性较大的特征参量,建立各地区和品种的贝叶斯分类器模型。结果表明,对各地区品种识别的正确回判率和测试集的正确识别率均达到100%。将各样本按品种合并,再对合并后的样本进行品种识别,除了新克旱9号的回判率为98.3%外,其它品种的回判率均为100%。测试集中,龙麦26和青春566正确识别率分别为97.5%和95.0%,其它品种均为100%。品种来源地识别也能达到较高的水平,甘肃、宁夏、新疆和黑龙江的正确识别率分别为88.6%、92.9%、72.9%和95.7%。说明利用籽粒图像对小麦品种进行识别高效可行。
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充