您的位置: 首页 > 中文期刊论文 > 详情页

深度Transformer迁移学习的页岩气储层核心参数预测案例

作   者:
汪敏郭鑫平唐洪明张少龙杨桃钟光海
作者机构:
海洋地质国家重点实验室西南石油大学地球科学与技术学院天然气地质四川省重点实验室西南石油大学电气信息学院中国石油西南油气田分公司页岩气研究院
关键词:
总有机碳含量总含气量Transformer海相页岩气孔隙度迁移学习
期刊名称:
地球物理学报
i s s n:
0001-5733
年卷期:
2023 年 66 卷 006 期
页   码:
2592-2610
摘   要:
地层纵横向非均质性强,工区间数据分布存在差异.这导致基于已有工区数据构建的机器学习储层参数预测模型,推广到新工区会存在较大预测误差.常规地质方法是在岩心与测井响应特征分析基础上建模,利用测井资料计算储层参数,流程复杂.该方法需要岩心校准模型,同样难以快速推广到新的工区.考虑地层纵横向非均质性,本文设计了一种深度Transformer迁移学习网络,通过已有工区的测井与岩心资料构建预测模型,实现未取心新工区储层参数快速准确预测.首先利用无监督学习算法-孤立森林剔除测井数据中存在的异常噪声数据.然后设计Transformer特征提取网络,提高网络特征提取能力,以此深入挖掘测井数据与储层参数的内在联系.最后设计深度迁移学习网络,构建网络损失函数,利用随机梯度下降算法优化网络参数,实现储层参数准确预测.本方案应用于四川南部地区五峰组一龙马溪组页岩储层参数孔隙度、总有机碳含量和总含气量预测.实验结果与工区校正后计算结果、主流机器学习模型预测结果对比,本方案结果与岩心数据具有更高的一致性.应用结果表明:本文方案具有实用性、有效性和可推广性.
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充