您的位置: 首页 > 外文期刊论文 > 详情页

基于DREAM_ZS算法的EIT电阻率反演方法研究

作   者:
李颖马重蕾赵营鸽王冠雄郝虎鹏
关键词:
电阻抗成像BP神经网络贝叶斯理论DREAM_ZS算法参数反演
期刊名称:
湖南大学学报(自然科学版)
i s s n:
1674-2974
年卷期:
2024 年 51 卷 002 期
页   码:
93-103
摘   要:
针对电阻抗成像(EIT)中的电阻率反演及其不确定性量化问题,提出基于贝叶斯理论的不确定性分析方法.首先,利用反向传播(BP)神经网络模型作为正问题替代模型,取得了计算精度高的结果,并且大大提高计算效率.然后,采用基于贝叶斯理论的自适应差分进化Metropolis抽样(DREAM_ZS)算法对电阻率进行反演,并对不同激励模式和不同先验分布进行了对比分析.对模拟头部的4层同心圆模型的反演结果显示,DREAM_ZS抽样算法能够对4个参数进行准确识别,相对激励模式的反演效果最优.4个参数的不确定性程度不同,头皮电阻率不确定性最小,敏感性最强,其次是颅骨,大脑和脑脊液的不确定性较大.进而,对高维参数的圆模型进行仿真,采用相对激励模式,DREAM_ZS抽样算法能够准确反演二维圆模型的各个参数.参数的先验分布为正态分布时,与均匀分布相比,其反演结果不确定性小,对算法的识别效果更强.
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充