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Abstract

Mouse represents a pivotal model and indispensable resource in medical and life sciences, widely used for developmental biology and multi-
omics studies. Yet, a comprehensive, integrated mouse multi-omics database remains lacking. Here, we established a mouse multi-omics
database, MouseOmics, by integrating 21 genomes distributed among five species within the genus Mus, transcriptomes in 584 tissue sam-
ples, proteomes in 285 tissue samples, metabolomes in 143 tissue samples, metallomes in 296 tissue samples, and three variomes covering
52 mouse inbred strains. All mouse multi-omics data can be explored through multiple functional modules with userfriendly web interface.
Furthermore, we embedded several useful tools, like MISAweb, for the identification of microsatellite DNAs, and specifically developed the
enrichment analysis modules of InterPro, Gene Ontology, and Pathway for mouse. The mouse multi-omics data can be downloaded online con-
veniently. MouseOmics will be updated regularly with the newly released mouse multi-omics data and can be accessed freely via the address
https://www.varnatech.cn/MouseOmics.
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Introduction than 45 species have been identified in the genus Mus, and

Mouse stands as one of the world’s most vital model organ-  some strains of mouse in Mus spretus, M. caroli, M. pahari, M.
isms, extensively utilized across diverse research fields. More  spicilegus, and M. musculus have undergone complete genome
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sequencing [1-5]. With the great progress in sequencing tech-
nology and computing power, there have been many studies
on mouse genome assembly and multi-omics sequencing [6—
11]. This has led to the acquisition of diverse biological infor-
mation across multiple mouse strains and life stages. Several
genomic, transcriptomic, proteomic, metabolomic, and phe-
nomic databases have been constructed and released in the
genus Mus, such as MGD, GXD, ProteomicsDB, and IMPC.
MGD provides comprehensive genomic and genetic data, in-
cluding reference genomes, gene annotations, mutant alleles,
phenotype associations, genetic markers, and germplasm re-
sources for Mus genus [12]. GXD integrates spatiotempo-
ral gene expression data, including iz situ hybridization pat-
terns, RNA-seq/array datasets, and embryonic developmental
stage-specific expression profiles for Mus musculus [13]. Pro-
teomicsDB contains proteomic information, including pro-
tein identification/quantification data, posttranslational mod-
ification sites, and mass spectrometry raw data across mul-
tiple species, including M. musculus [14]. IMPC integrates
large-scale phenotypic screening data, including standard-
ized knockout phenotypes, embryo viability analyses, and
genotype-phenotype associations for M. musculus [15]. These
databases offer abundant biological data of the mouse, which
assist and consolidate the research progress of life and medical
sciences, but their constrained architecture cannot accommo-
date the multidimensional requirements of advancing multi-
omics approaches. Several databases primarily contain one
omics data and lack comprehensive multi-omics profiles span-
ning the entire murine life cycle. Meanwhile the metallomics,
which includes the content, speciation, distribution, and func-
tions of metals and metalloids within organisms, has gained
significant research interest [16-19]. An increasing number
of studies are exploring the changes and functional effects
of metal elements across different mouse life stages [20-22].
Meanwhile, the integration of multi-omics databases based on
model organisms has been proven to significantly advance sci-
entific research [23-26], but there isn’t a systematic database
that collects and integrates metallomics data.

In this study, we constructed a mouse multi-
omics database (designated as MouseOmics,
https://varnatech.cn/MouseOmics) by mining and inte-
grating the data of 21 mouse genomes, 14 transcriptomes, 14
proteomes, 8 metabolomes, 6 metallomes, and 3 variomes.
MouseOmics offers extensive multi-omics data covering
diverse mouse strains across their entire life cycle and sup-
plies user-friendly visualization tools, which will become a
valuable database for future mouse multi-omics research.

Materials and methods

Data collection and preprocess

A total of 21 mouse genomes encompassing five mouse
species, including M. pahari, M. spicilegus, M. spretus,
M. caroli, and M. musculusis, are currently available in
MouseOmics. The M. musculusis species contained 13 lab-
oratory lines (house mouse) and four subspecies, including M.
musculus subsp. molossinus (Japanese wild mouse), M. mus-
culus subsp. castaneus (southeastern Asian house mouse), M.
musculus subsp. domesticus (western European house mouse),
and M. musculus subsp. musculus (eastern European house
mouse). All genomic data are the newly released and high-
quality genome assemblies downloaded from public reposi-

tories. Several representative projects of transcriptomics, pro-
teomics, metabolomics, metallomics, and variomics data were
extracted from the released publications through data-mining
technology with in-house pipeline. These data span multiple
mouse tissues and organs throughout development and are
supplemented by three variomics cohorts representing dis-
tinct strains. Finally, 21 mouse genomes, transcriptomes in
584 tissue samples with 2254 replicates, proteomes in 285
tissue samples with 1161 replicates, metabolomes in 143 tis-
sue samples with 1025 replicates, and metallomes in 296 tis-
sue samples with 1920 replicates were parsed and collected in
MouseOmics.

A total of 426 844 mouse genes with 1074 098 tran-
scripts in MouseOmics received comprehensive functional an-
notation via an integrated pipeline that queries premier on-
line web services and public databases (Table 1). The cus-
tomized InterProScan tool (interproscan-5.52-86.0) was em-
ployed to functionally annotate the protein sequences of
21 mouse genomes with parameters: “-f tsv -dp -goterms -
pa” [27]. All the protein sequences of 21 mouse genomes
were mapped to the non-redundant (nr) (v2025.01.07)
and UniProt-SwissProt/TrEMBL (Release_2024_06) protein
databases using Diamond Blastp v0.9.24.125 with the param-
eters: “-e le-5 —max-target-seqs 5 —outfmt 6 —more-sensitive”
[28], and the top five best hits were curated and collected in the
database. Furthermore, eggNOG-mapper [29] software with
the latest database was implemented to get the functional an-
notation of Gene Ontology (GO) [30], MetaCyc [31], and Re-
actome [32] of all mouse protein sequences. After merging the
output files between eggNOG-mapper and InterProScan soft-
ware, only the mouse annotations were retrieved as the final
annotations of GO and pathway. Finally, comprehensive func-
tional annotation information of all protein-coding genes in
21 mouse genomes was obtained and parsed for the down-
stream functional enrichment analyses (Table 2).

The diamond (v2.1.8.162) with an E-value cutoff of le-
10 was employed to identify homologous gene pairs be-
tween any two genomes among the 21 mouse genomes
[28]. With the combination of homologous gene pairs and
gene location, MCScanX software was used to identify syn-
tenic blocks with default parameters: E_VALUE = 1e-10
and MATCH_SIZE = 5. Finally, 67 967 syntenic blocks and
7 539 681 syntenic gene pairs have been identified for the 21
mouse genomes [33].

Database implementation

MouseOmics was developed with Hyper Text Markup Lan-
guage (HTML), Cascading Style Sheets (CSS), and LAMP
(Linux, Apache, MySQL, and PHP/Perl) system, as well as
a high-level, interpreted, multi-paradigm programming lan-
guage, JavaScript (JS). All the mouse multi-omics data were
stored in the relational database management system, MySQL
database, and static files. MouseOmics integrated a suite of
functional modules and localized third-party software that
were user-friendly, allowing for the exploration and visualiza-
tion of mouse multi-omics data across various mice. R mod-
ule, Statistics::R, was used to identify the differentially ex-
pressed genes between two different tissues and implement
function enrichment analysis. D3 (or D3.js) is a JS library for
visualizing genomic data using web standards, which will as-
sist in visualizing the genomic data using SVG, Canvas, and
HTML, and in designing the right visual interface for genomic
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Genome size

Species English name Strain (GB) No. Genes No. mRNA Released date
M. pahari shrew mouse PAHARI/EI] 2.5 19 164 48 213 28 April 2017
M. spicilegus steppe mouse ZRU 2.7 22907 36 985 14 April 2023
M. spretus Western wild mouse SPRET/Ei] 2.6 19 580 49 220 26 April 2016
M. caroli Ryukyu mouse CAROLI/EI] 2.6 19 311 48 738 28 April 2017
M. musculus house mouse C3H/He] 2.5 20 093 50368 1 January 2022
M. musculus house mouse BALB/c] 2.5 20232 50612 2 January 2022
M. musculus house mouse DBA/2] 2.6 20 189 50499 3 January 2022
M. musculus house mouse NOD/ShiLtJ 2.5 20059 50193 4 January 2022
M. musculus house mouse A/J 2.5 20 165 50537 30 June 2022
M. musculus house mouse 129S1_Svim] 2.5 20178 50456 1 July 2022

M. musculus house mouse CBA/] 2.5 20 092 50316 30 June 2022
M. musculus house mouse CS57BL/6N]J 2.5 20 308 50769 1 July 2022

M. musculus house mouse NZO/HILtJ 2.8 20267 50 808 18 December 2022
M. musculus house mouse LP/] 2.9 20 164 50376 18 December 2022
M. musculus house mouse AKR/] 2.5 20170 50523 1 July 2022

M. musculus house mouse FVB/N]J 2.5 20 068 50246 1 July 2022

M. musculus house mouse C57BL/6] 2.7 21748 65977 24 June 2020
M. musculus ssp. musculus Eastern European house mouse PWK_Ph] 2.5 19 532 49198 5 January 2022
M. musculus ssp. domesticus Western European house mouse WSB/Ei] 2.5 19 787 49 707 1 July 2022

M. musculus ssp. molossinus Japanese wild mouse JF1/Ms] 2.7 23178 70 897 1 July 2022

M. musculus ssp. castaneus southeastern Asian house mouse ~ CAST/Ei] 2.5 19 652 49 460 1 July 2022
Table 2. Statistics of annotated genes across 21 mouse genomes

Strain No. Genes No. mRNA IPRScan Gene ontology  MetaCYC Reactome nr Swiss-Prot TrEMBL
PAHARI/EI] 19 164 48 213 44 379 40 795 24 036 38438 48250 47 514 48 626
ZRU 22 907 36 985 35212 32 667 19 908 30 820 36 702 35520 36 858
SPRET/Ei] 19 580 49 220 46 971 43207 25 500 40 748 51027 50211 51521
CAROLI/EI] 19 311 48 738 44 846 41185 24 256 38 832 48 858 48 032 49 313
C3H/He] 20093 50 368 46 383 42 598 25 040 40 200 50450 49 573 50952
BALB/c] 20232 50612 46 526 42 767 25068 40 335 50619 49 728 51119
DBA/2] 20 189 50499 46 401 42 621 50906 40232 50552 49 650 51046
NOD/ShiLt] 20059 50193 46 337 42 552 25031 40 148 50 424 49 552 50929
PWK_Ph] 19 532 49 198 47 310 43 485 25715 40 965 51412 50574 51908
A/] 20 165 50537 46 586 42 801 25133 40 352 50 666 49 785 51163
129S1_Svim] 20178 50456 46 580 42 787 25174 40 384 50680 49 776 51178
CBA/J 20092 50316 46 385 42 596 25070 40 201 50468 49 575 50965
JF1/Ms] 23178 70 897 63289 57421 33478 54775 69 326 67013 70 078
CS7BL/6N]J 20 308 50769 46 701 42 863 25 24§ 40 461 50 840 49 934 51351
CS57BL/6] 21748 65977 59 448 54 364 30 669 51384 64 653 63 528 65 373
NZO/HILtJ 20267 50 808 46 897 43 062 25 367 40 664 50992 50094 51498
LP/J 20 164 50376 46 430 42 646 25112 40 267 50523 49 642 51025
AKR/] 20170 50523 46 556 42710 25103 40 347 50 648 49 770 51152
CAST/Ei] 19 652 49 460 47 607 43750 / 41 246 51737 50 886 52214
FVB/N] 20 068 50 246 46 257 42495 25032 40113 50 385 49 502 50 888
WSB/Ei] 19 787 49 707 45924 42182 24 867 39783 49 987 49 143 50482

data. MouseOmics employed D3 library to display the syn-
tenic view between any two mouse genomes. Several R li-
braries, such as DESeq2 [34], pheatmap [35], ggplot2 [36],
and ggrepel [37], were used to display the expression profiles
of transcriptome and proteome, as well as the differences of
metabolites and ion concentrations in comparisons between
two tissues. The SAMtools v0.1.16 and BCFtools v1.20 pack-
ages were installed to process SAM and BAM files, and VCF
and BCF files to extract the genetic variations in mouse pop-
ulations [38]. The interactive visualization of mouse multi-
omics data was implemented using Apache WWWBLAST and
JBrowse2 for the genome browser with views of mouse or-
thologs and genomic components [39].

Results

Overview of MouseOmics

The MouseOmics database consists of eight functional parts,
including six “Omics” data exploration, useful tools, and
supplemental information, like statistics, resources, manual,

and download. The genomics data were organized through
five mouse species, with the remaining six “Omics” data or-
ganized through the released projects (Fig. 1). MouseOmics
presents basic information for each mouse genome sequencing
project and four interactive functional modules: basic search,
advanced search, genome browse, and data download, which
will assist to retrieve, search, and visualize the information
of genomic components in each mouse genome. For the vi-
sualization of transcriptomics and proteomics data, the gene
and protein expression profiles were displayed through select-
ing tissues and inputting gene lists, and several projects with
equal biological replicates were analyzed through pairwise
comparison between any two samples in the transcriptomic
and proteomic projects. However, the metabolite values and
ion concentration values across various tissues were visualized
through selecting target tissues in the metabolome and met-
allome functional parts. MouseOmics performed the syntenic
analysis within five mouse species to identify divergence in the
genus Mus. MouseOmics supplied user-friendly interface, and
key mouse functional genes can be explored through browsing
and searching with localized open-resource software, such as
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Figure 1. Overview of the MouseOmics database. All mouse multi-omics data collected in the MouseOmics database were downloaded from public
databases or resources, which comprise six parts: genome, transcriptome, proteome, metabolome, metallome, and variome. The collected multi-omics
data were performed to re-annotate and re-analyze, and then stored in MySQL relational database and static files on server. The programming
languages such as HTML, JS, Perl/Python, and R were installed on the server, and parsed and visualize the multi-omics data in back- and front end.
Through the Apache, users can access the MouseOmics database with the userfriendly web interface.

keyword search, BLAST, and JBrowse2. Except that, we em-
bedded several useful tools like MISAweb for the identification
of microsatellite DNAs and specifically developed the enrich-
ment analysis tools of InterPro, GO, and pathway for mouse.

Web interface and usage

The MouseOmics database presents a user-friendly interface
to explore extensive mouse multi-omics data for the commu-
nity. The current version of the MouseOmics database mainly
contains nine main pages, namely Home, Genome, Transcrip-
tome, Proteome, Metabolome, Metallome, Tools, and Help.
The Home page constitutes a synoptic portal that strategi-
cally amalgamates the database overview, expedited naviga-
tion modules, curated links, real-time announcements, peer-
reviewed literature, and direct gateways to all omics reposi-
tories, thereby furnishing experimental biologists with an in-
tegrated and information-dense portal to the resource. The
Genome, Transcriptome, Proteome, Metabolome, and Met-

allome pages organize multi-omics projects by mouse strain
and link each project to the downstream analysis. The Tools
page provides both standalone utilities and embedded web ser-
vices, while the Help pages guide users through every feature
of MouseOmics.

Mouse genome components

The Genome page presents detailed information for each
mouse species and genome sequencing project, such as basic
information, assembly status, genome annotation, and publi-
cation (Fig. 2A). For each gene, MouseOmics supplies basic
information and location on genome assemblies, and specifi-
cally developed the gene and protein expression profiles across
the transcriptome and proteome projects for M. musculus,
strain C57BL/6] (Fig. 2B). As the gene detailed information,
the transcripts were supplied with basic information and ge-
nomic location on genome assemblies across various mouse
species, as well as the functional annotation. Within the panel
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Figure 2. Representative screenshots for genome module. (A) The detailed page of mouse species and genome sequencing project. (B) The detailed
page of mouse genes, including basic information, gene location, and gene and protein expression profiles. (C) The detailed page of mouse mRNA or
transcripts that included mRNA basic information, corresponding genomic location, and functional annotations.

of functional annotation, each functional unit has the detailed
annotation from online web services and public protein func-
tion database via the corresponding hyperlinks (Fig. 2C).

Mouse gene expression module

The MouseOmics database systematically organizes represen-
tative transcriptome projects spanning different mouse tissues
and life periods across an extensive panel of mouse strains
(Fig. 3A). For every transcriptome project, MouseOmics
presents exhaustive metadata, accession, primary publica-
tion, experimental design, tissue source, and treatment reg-
imen, alongside quantitative expression matrices that re-
port mean TPM (or FPKM) across biological replicates and
their associated standard deviations (Fig. 3B). Each expressed
gene is hyperlinked to a dedicated gene-detail page, en-
abling one-click retrieval of curated functional annotations
within MouseOmics. Each expressed gene is hyperlinked to
its dedicated gene-detail page, enabling instant, one-click ac-
cess to curated functional annotations within MouseOmics.
The transcriptome project interface comprises two integrated
functional units: “gene expression” and “pairwise compari-
son.” For the functional unit of “gene expression,” users ob-
tain an interactive expression heatmap that instantly visual-
izes the transcriptional profile after selecting a target tissue
within the project and entering a gene or gene list of inter-
est (Fig. 3C and D). The pairwise comparison module em-
powers users to conduct head-to-head transcriptomic analyses
between any two samples within a project, instantly reveal-
ing differential expression landscapes. Upon selecting query
and subject samples together with the treatments of interest,
MouseOmics executes differential expression analysis and de-
livers exhaustive results: a filtered list of DEGs meeting user-
defined adjusted P-value and fold-change thresholds, accom-

panied by downloadable tables and high-resolution, interac-
tive heatmaps, and volcano plots (Fig. 3E and F).

MISAweb and synteny viewer modules

Microsatellite DNAs participate in a spectrum of funda-
mental processes—chromatin architecture sculpting, DNA
metabolism, and mismatch-repair fidelity—thereby furnish-
ing mice with an agile, heritable substrate for rapid ge-
nomic and phenotypic adaptation to environmental flux. The
MouseOmics database integrates MISAweb module, a dedi-
cated online microsatellite discovery engine that enables mi-
crosatellite DNA mining across 21 mouse reference genomes.
Users simply upload or paste a target genomic sequence;
within seconds, MISAweb returns an exhaustive catalogue of
microsatellites packaged in two compressed archives, includ-
ing detailed statistics and tabulated list of microsatellite DNAs
in the target mouse genomic sequence.

To illuminate genomic evolution and divergence across the
21 curated mouse genomes, MouseOmics provides an interac-
tive synteny viewer that dynamically renders syntenic blocks
and homologous gene pairs between any single chromosome
of a reference genome and the complete chromosome com-
plement of any other mouse strain in the collection (Fig. 4A).
On the back end, syntenic blocks and homologous gene pairs
have been stored in a normalized MySQL relational schema,
enabling sub-second retrieval of any requested chromosome-
to-genome comparison. Once users designate the query chro-
mosome in target mouse genome, and comparative mouse
strain, the submitted job triggers MouseOmics to render high-
resolution synteny viewer via Circos software and to deliver
a structured table enumerating block ID, query and subject
coordinates, score, and E-value for every detected syntenic re-
gion (Fig. 4B). Within each syntenic block, homologous gene
pairs are rendered as collinear cartoon bars in the Circos plot
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Figure 3. Representative screenshots for transcriptome module. (A) The transcriptome project organized by mouse strains. (B) The detailed information
for each project and expressed genes in the project. (C) The functional unit of “gene expression.” (D) The gene expression of target gene or gene list in
single or all tissue(s). (E) The functional unit of “pairwise comparison.” (F) The volcano plot of differentially expressed genes of the pairwise comparison

in the project.

and listed in an interactive table; every block ID is hyperlinked
to enable instant drill-down into detailed gene-level annota-
tions within MouseOmics (Fig. 4C).

Functional enrichment modules

MouseOmics has three kinds of functional enrichment mod-
ules, including InterPro, GO, and Pathway enrichment mod-
ules. On the back-end, MouseOmics maintains pre-indexed,
genome-specific flat files that house the complete InterPro,
GO, and MetaCyc functional annotations for every protein
encoded within 21 mouse reference genomes. InterPro and

Pathway enrichment modules have the same procedures to
perform in MouseOmics. Via the web interface, users first
select the desired genome from a dropdown box, then sup-
ply a list of protein identifiers in the adjacent textbox, and
finally define the statistical significance threshold by enter-
ing a P-value cutoff derived from the hypergeometric test.
Upon submission, the analysis job is dispatched to the server
queue for immediate processing. MouseOmics displays each
enriched InterPro accession together with its curated descrip-
tion, the corresponding MetaCyc pathway identifier and func-
tional summary, and a concise catalog of all protein identi-
fiers within the selected mouse genome that co-cluster into
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the same InterPro entry and pathway. Owing to the tripartite
architecture of the GO resource, the GO enrichment mod-
ule in MouseOmics incorporates a dedicated workflow that
discretely evaluates enrichment within the biological process,
molecular function, and cellular component ontologies. Fol-
lowing the same streamlined submission used for InterPro
and pathway enrichment, users only need to specify the de-
sired ontologies; the back end then executes the GO en-
richment and returns the enriched terms together with their
full textual descriptions for the queried mouse functional
genes.

Case study showing interactions among multi-omic
data

The MouseOmics database allows users to search for any gene
of interest across genome, transcriptome, and proteome sec-
tions. Using slc11a2 as an example, we demonstrate how to
retrieve comprehensive information from MouseOmics. This
gene encodes the divalent metal transporter DMT1, which is
essential for the absorption and transport of divalent metal
ions and for maintaining metal homeostasis, including iron
balance [40, 41]. Starting from the homepage, users can en-
ter “slc11a2” in the search box (Fig. 5A). Upon clicking the
search button, MouseOmics returns a list of all slc11a2 genes
across various mouse strains. The results are displayed in a
visualized table that includes gene models, protein IDs, gene
IDs, mouse species, and chromosome numbers (Fig. 5B). By
clicking on a gene model hyperlink, users can access detailed
information, including basic gene features and functional an-
notations (Fig. 5C). From this page, clicking on the gene ID hy-

perlink leads to a comprehensive gene summary that shows all
associated gene models, gene expression levels across multiple
RNA-seq projects, and protein abundance data from various
proteome projects (Fig. SD). Furthermore, clicking on the hy-
perlinks within the expression tables allows users to view de-
tailed gene expression values and protein abundances across
different tissues or conditions (Fig. SE and F). Thus, the search
function enables users to explore gene information across ge-
nomics, transcriptomics, and proteomics. The integrated in-
terface allows intuitive and easy visualization of multi-omics
data.

MouseOmics consolidates the available metallome
projects—though still limited—into a strain-centric frame-
work that lets users quickly retrieve ion concentrations
for any tissue or condition (Fig. 6A). The module offers
two complementary views: an overview page summariz-
ing project metadata, plotting aggregate ion levels and
supplying a sortable concentration table (Fig. 6B), and a
single-tissue query panel where a tissue and either an ion
list or an individual ion can be selected (Fig. 6C). One click
generates an interactive heatmap plus downloadable table
of concentrations for the chosen tissue or condition (Fig.
6D), while clicking an ion symbol (e.g. Fe) opens line or
bar charts tracing that ion’s abundance across every met-
allome project in the database (Fig. 6E). The metallome
module equips experimental biologists with a clear, data-
driven view of how metal content differs among tissues
and across mouse strains, deepening their understanding of
metal stress and accelerating the advancement of murine
metallomics.
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Figure 5. Search case for the slc717a2 gene. (A) Search function on the homepage. (B) List of slc77a2 homologs across mouse strains. (C) Gene-model

detail (ENSMUST00000023774) for slc11a2 gene in M. musculus C57BL/6J. (D)

Corresponding gene details (ENSMUSG00000023030) for the target

gene model. (E) The gene expression values across tissues in the RNA-seq project. (F) Protein abundances across tissues from proteome datasets.

Discussion and future perspectives

The MouseOmics database provides an integrated platform
for accessing and leveraging multi-omics data consolidated
from diverse mouse studies. Recognizing the pivotal role
of multi-omics integration in advancing scientific discover-
ies, this resource consolidates extensive datasets spanning ge-
nomic annotations across multiple mouse strains, detailed mu-
tation profiles, and high-throughput data from multi-tissue or-
gans of mice at varying ages.

Relative to other published mouse biological databases, in-
cluding MGD, GXD, ProteomicsDB, MMMDB, and IMPC, it
demonstrates unique capabilities as follows: (i) MouseOmics
is the first integrated database for six mouse omics types.
Meanwhile, MouseOmics is also the first database to compre-
hensively collect and assemble mouse metallomics data, en-
abling researchers to rapidly mine cross-omics biological in-
sights; (ii) MouseOmics collects multi-omics data from mice
across the entire lifespan. For example, metallomics data of
multiple organs from mice (aged from zero to three years),
and proteomic, transcriptomic, and metabolomic data span-

ning multiple stages and organs, including from embryonic
stage to birth, birth to adulthood, and adulthood to aging;
(iii) MouseOmics performed the syntenic analysis within five
mouse species aiming to detect the divergence in the genus
Mus; (iv) MouseOmics embedded several useful tools like
MISAweb, for the identification of microsatellite DNAs, and
specifically developed the enrichment analysis tools of Inter-
Pro, GO, and pathway for the mouse; and (v) MouseOmics
is not restricted to specific architectures and will continuously
update with other advanced omics data, including single-cell
transcriptomics and metagenomics.

In summary, MouseOmics serves as a crucial resource and
tool for swiftly retrieving mouse—related gene information
and understanding mouse multi-omics data. The data cov-
erage in MouseOmics remains comparatively limited. As se-
quencing technologies advance and become more widespread,
more datasets will emerge, and we will continually expand
MouseOmics with representative mouse multi-omics datasets,
prioritizing developmental multi-omics profiles and metal-
lomic dysregulation datasets. The integration of these data
types, combined with the development of database tools, will
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Figure 6. The utilization of metallome modules. (A) The overview of metallomic data organized in the database. (B) The concentration showing page of
all ions in metallome project. (C) The search function of ion concentration of single tissue. (D) The concentration showing page of target ions in single

tissue. (E) The display of Fe concentration across various metallome projects.

effectively assist researchers in elucidating the roles of various
metal elements throughout the mouse lifespan. Such integra-
tion will help pinpoint the imbalances in transporters, pro-
teins, and metabolites resulting from the deficiency or excess
of specific metals, thereby facilitating a deeper understand-
ing of the interplay between metallomics and other omics
fields. In the future, we will develop more user-friendly ana-
lytical tools, including those for cross-omics correlation anal-
ysis and protein—protein interaction networks, and gradually
build new omics sections such as single-cell transcriptomics,
metagenomics, and pangenomics.
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