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Abstract 

Mouse represents a pivotal model and indispensable resource in medical and life sciences, widely used for developmental biology and multi- 
omics studies. Yet, a comprehensive, integrated mouse multi-omics database remains lacking . Here, we est ablished a mouse multi-omics 
database, MouseOmics, by integrating 21 genomes distributed among five species within the genus Mus , transcriptomes in 584 tissue sam- 
ples, proteomes in 285 tissue samples, metabolomes in 143 tissue samples, metallomes in 296 tissue samples, and three variomes covering 
52 mouse inbred strains. All mouse multi-omics data can be explored through multiple functional modules with user-friendly web interface. 
Furthermore, w e embedded se v eral useful tools, lik e MISAw eb, f or the identification of microsatellite DNAs, and specifically de v eloped the 
enrichment analysis modules of InterPro, Gene Ontology, and Pathway for mouse. The mouse multi-omics data can be downloaded online con- 
veniently. MouseOmics will be updated regularly with the newly released mouse multi-omics data and can be accessed freely via the address 
ht tps://www.varnatec h.cn/MouseOmics . 
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ntroduction 

ouse stands as one of the world’s most vital model organ-
sms, extensively utilized across diverse research fields. More
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than 45 species have been identified in the genus Mus , and
some strains of mouse in Mus spretus , M. caroli , M. pahari, M.
spicilegus , and M. musculus have undergone complete genome
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sequencing [ 1–5 ]. With the great progress in sequencing tech-
nology and computing power, there have been many studies
on mouse genome assembly and multi-omics sequencing [ 6–
11 ]. This has led to the acquisition of diverse biological infor-
mation across multiple mouse strains and life stages. Several
genomic, transcriptomic, proteomic, metabolomic, and phe-
nomic databases have been constructed and released in the
genus Mus , such as MGD , GXD , ProteomicsDB, and IMPC.
MGD provides comprehensive genomic and genetic data, in-
cluding reference genomes, gene annotations, mutant alleles,
phenotype associations, genetic markers, and germplasm re-
sources for Mus genus [ 12 ]. GXD integrates spatiotempo-
ral gene expression data, including in situ hybridization pat-
terns, RNA-seq / array datasets, and embryonic developmental
stage-specific expression profiles for Mus musculus [ 13 ]. Pro-
teomicsDB contains proteomic information, including pro-
tein identification / quantification data, posttranslational mod-
ification sites, and mass spectrometry raw data across mul-
tiple species, including M. musculus [ 14 ]. IMPC integrates
large-scale phenotypic screening data, including standard-
ized knockout phenotypes, embryo viability analyses, and
genotype-phenotype associations for M. musculus [ 15 ]. These
databases offer abundant biological data of the mouse, which
assist and consolidate the research progress of life and medical
sciences, but their constrained architecture cannot accommo-
date the multidimensional requirements of advancing multi-
omics approaches. Several databases primarily contain one
omics data and lack comprehensive multi-omics profiles span-
ning the entire murine life cycle. Meanwhile the metallomics,
which includes the content, speciation, distribution, and func-
tions of metals and metalloids within organisms, has gained
significant research interest [ 16–19 ]. An increasing number
of studies are exploring the changes and functional effects
of metal elements across different mouse life stages [ 20–22 ].
Meanwhile, the integration of multi-omics databases based on
model organisms has been proven to significantly advance sci-
entific research [ 23–26 ], but there isn’t a systematic database
that collects and integrates metallomics data. 

In this study, we constructed a mouse multi-
omics database (designated as MouseOmics,
https: // varnatech.cn / MouseOmics) by mining and inte-
grating the data of 21 mouse genomes, 14 transcriptomes, 14
proteomes, 8 metabolomes, 6 metallomes, and 3 variomes.
MouseOmics offers extensive multi-omics data covering
diverse mouse strains across their entire life cycle and sup-
plies user-friendly visualization tools, which will become a
valuable database for future mouse multi-omics research. 

Materials and methods 

Data collection and preprocess 

A total of 21 mouse genomes encompassing five mouse
species, including M. pahari , M. spicilegus , M. spretus ,
M. caroli , and M. musculusis, are currently available in
MouseOmics. The M. musculusis species contained 13 lab-
oratory lines (house mouse) and four subspecies, including M.
musculus subsp. molossinus (Japanese wild mouse), M. mus-
culus subsp. castaneus (southeastern Asian house mouse), M.
musculus subsp. domesticus (western European house mouse),
and M. musculus subsp. musculus (eastern European house
mouse). All genomic data are the newly released and high-
quality genome assemblies downloaded from public reposi-
tories. Several representative projects of transcriptomics, pro- 
teomics, metabolomics, metallomics, and variomics data were 
extracted from the released publications through data-mining 
technology with in-house pipeline. These data span multiple 
mouse tissues and organs throughout development and are 
supplemented by three variomics cohorts representing dis- 
tinct strains. Finally, 21 mouse genomes, transcriptomes in 

584 tissue samples with 2254 replicates, proteomes in 285 

tissue samples with 1161 replicates, metabolomes in 143 tis- 
sue samples with 1025 replicates, and metallomes in 296 tis- 
sue samples with 1920 replicates were parsed and collected in 

MouseOmics. 
A total of 426 844 mouse genes with 1074 098 tran- 

scripts in MouseOmics received comprehensive functional an- 
notation via an integrated pipeline that queries premier on- 
line web services and public databases (Table 1 ). The cus- 
tomized InterProScan tool (interproscan-5.52–86.0) was em- 
ployed to functionally annotate the protein sequences of 
21 mouse genomes with parameters: “-f tsv -dp -goterms - 
pa” [ 27 ]. All the protein sequences of 21 mouse genomes 
were mapped to the non-redundant (nr) (v2025.01.07) 
and UniProt-SwissProt / TrEMBL (Release_2024_06) protein 

databases using Diamond Blastp v0.9.24.125 with the param- 
eters: “-e 1e-5 –max-target-seqs 5 –outfmt 6 –more-sensitive”
[ 28 ], and the top five best hits were curated and collected in the 
database. Furthermore, eggNOG-mapper [ 29 ] software with 

the latest database was implemented to get the functional an- 
notation of Gene Ontology (GO) [ 30 ], MetaCyc [ 31 ], and Re- 
actome [ 32 ] of all mouse protein sequences. After merging the 
output files between eggNOG-mapper and InterProScan soft- 
ware, only the mouse annotations were retrieved as the final 
annotations of GO and pathway . Finally , comprehensive func- 
tional annotation information of all protein-coding genes in 

21 mouse genomes was obtained and parsed for the down- 
stream functional enrichment analyses (Table 2 ). 

The diamond (v2.1.8.162) with an E -value cutoff of 1e- 
10 was employed to identify homologous gene pairs be- 
tween any two genomes among the 21 mouse genomes 
[ 28 ]. With the combination of homologous gene pairs and 

gene location, MCScanX software was used to identify syn- 
tenic blocks with default parameters: E_VALUE = 1e-10 

and MATCH_SIZE = 5. Finally, 67 967 syntenic blocks and 

7 539 681 syntenic gene pairs have been identified for the 21 

mouse genomes [ 33 ]. 

Database implementation 

MouseOmics was developed with Hyper Text Markup Lan- 
guage (HTML), Cascading Style Sheets (CSS), and LAMP 

(Linux, Apache, MySQL, and PHP / Perl) system, as well as 
a high-level, interpreted, multi-paradigm programming lan- 
guage, JavaScript (JS). All the mouse multi-omics data were 
stored in the relational database management system, MySQL 

database, and static files. MouseOmics integrated a suite of 
functional modules and localized third-party software that 
were user-friendly, allowing for the exploration and visualiza- 
tion of mouse multi-omics data across various mice. R mod- 
ule, Statistics::R, was used to identify the differentially ex- 
pressed genes between two different tissues and implement 
function enrichment analysis. D3 (or D3.js) is a JS library for 
visualizing genomic data using web standards, which will as- 
sist in visualizing the genomic data using SVG, Canvas, and 

HTML, and in designing the right visual interface for genomic 
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Table 1. Statistics of 21 mouse genome assemblies 

Species English name Strain 
Genome size 
(GB) No. Genes No. mRNA Released date 

M. pahari shrew mouse PAHARI / EIJ 2.5 19 164 48 213 28 April 2017 
M. spicilegus steppe mouse ZRU 2.7 22 907 36 985 14 April 2023 
M. spretus Western wild mouse SPRET / EiJ 2.6 19 580 49 220 26 April 2016 
M. caroli Ryukyu mouse CAROLI / EIJ 2.6 19 311 48 738 28 April 2017 
M. musculus house mouse C3H / HeJ 2.5 20 093 50 368 1 January 2022 
M. musculus house mouse BALB / cJ 2.5 20 232 50 612 2 January 2022 
M. musculus house mouse DBA / 2J 2.6 20 189 50 499 3 January 2022 
M. musculus house mouse NOD / ShiLtJ 2.5 20 059 50 193 4 January 2022 
M. musculus house mouse A / J 2.5 20 165 50 537 30 June 2022 
M. musculus house mouse 129S1_SvImJ 2.5 20 178 50 456 1 July 2022 
M. musculus house mouse CBA / J 2.5 20 092 50 316 30 June 2022 
M. musculus house mouse C57BL / 6NJ 2.5 20 308 50 769 1 July 2022 
M. musculus house mouse NZO / HlLtJ 2.8 20 267 50 808 18 December 2022 
M. musculus house mouse LP / J 2.9 20 164 50 376 18 December 2022 
M. musculus house mouse AKR / J 2.5 20 170 50 523 1 July 2022 
M. musculus house mouse FVB / NJ 2.5 20 068 50 246 1 July 2022 
M. musculus house mouse C57BL / 6J 2.7 21 748 65 977 24 June 2020 
M. musculus ssp. musculus Eastern European house mouse PWK_PhJ 2.5 19 532 49 198 5 January 2022 
M. musculus ssp. domesticus Western European house mouse WSB / EiJ 2.5 19 787 49 707 1 July 2022 
M. musculus ssp. molossinus Japanese wild mouse JF1 / MsJ 2.7 23 178 70 897 1 July 2022 
M. musculus ssp. castaneus southeastern Asian house mouse CAST / EiJ 2.5 19 652 49 460 1 July 2022 

Table 2. Statistics of annotated genes across 21 mouse genomes 

Strain No. Genes No. mRNA IPRScan Gene ontology MetaCYC Reactome nr Swiss-Prot TrEMBL 

PAHARI / EIJ 19 164 48 213 44 379 40 795 24 036 38 438 48 250 47 514 48 626 
ZRU 22 907 36 985 35 212 32 667 19 908 30 820 36 702 35 520 36 858 
SPRET / EiJ 19 580 49 220 46 971 43 207 25 500 40 748 51 027 50 211 51 521 
CAROLI / EIJ 19 311 48 738 44 846 41 185 24 256 38 832 48 858 48 032 49 313 
C3H / HeJ 20 093 50 368 46 383 42 598 25 040 40 200 50 450 49 573 50 952 
BALB / cJ 20 232 50 612 46 526 42 767 25 068 40 335 50 619 49 728 51 119 
DBA / 2J 20 189 50 499 46 401 42 621 50 906 40 232 50 552 49 650 51 046 
NOD / ShiLtJ 20 059 50 193 46 337 42 552 25 031 40 148 50 424 49 552 50 929 
PWK_PhJ 19 532 49 198 47 310 43 485 25 715 40 965 51 412 50 574 51 908 
A / J 20 165 50 537 46 586 42 801 25 133 40 352 50 666 49 785 51 163 
129S1_SvImJ 20 178 50 456 46 580 42 787 25 174 40 384 50 680 49 776 51 178 
CBA / J 20 092 50 316 46 385 42 596 25 070 40 201 50 468 49 575 50 965 
JF1 / MsJ 23 178 70 897 63 289 57 421 33 478 54 775 69 326 67 013 70 078 
C57BL / 6NJ 20 308 50 769 46 701 42 863 25 245 40 461 50 840 49 934 51 351 
C57BL / 6J 21 748 65 977 59 448 54 364 30 669 51 384 64 653 63 528 65 373 
NZO / HlLtJ 20 267 50 808 46 897 43 062 25 367 40 664 50 992 50 094 51 498 
LP / J 20 164 50 376 46 430 42 646 25 112 40 267 50 523 49 642 51 025 
AKR / J 20 170 50 523 46 556 42 710 25 103 40 347 50 648 49 770 51 152 
CAST / EiJ 19 652 49 460 47 607 43 750 / 41 246 51 737 50 886 52 214 
FVB / NJ 20 068 50 246 46 257 42 495 25 032 40 113 50 385 49 502 50 888 
WSB / EiJ 19 787 49 707 45 924 42 182 24 867 39 783 49 987 49 143 50 482 
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ata. MouseOmics employed D3 library to display the syn-
enic view between any two mouse genomes. Several R li-
raries, such as DESeq2 [ 34 ], pheatmap [ 35 ], ggplot2 [ 36 ],
nd ggrepel [ 37 ], were used to display the expression profiles
f transcriptome and proteome, as well as the differences of
etabolites and ion concentrations in comparisons between

wo tissues. The SAMtools v0.1.16 and BCFtools v1.20 pack-
ges were installed to process SAM and BAM files, and VCF
nd BCF files to extract the genetic variations in mouse pop-
lations [ 38 ]. The interactive visualization of mouse multi-
mics data was implemented using Apache WWWBLAST and
Browse2 for the genome browser with views of mouse or-
hologs and genomic components [ 39 ]. 

esults 

verview of MouseOmics 

he MouseOmics database consists of eight functional parts,
ncluding six “Omics” data exploration, useful tools, and
upplemental information, like statistics, resources, manual,
and download. The genomics data were organized through
five mouse species, with the remaining six “Omics” data or-
ganized through the released projects (Fig. 1 ). MouseOmics
presents basic information for each mouse genome sequencing
project and four interactive functional modules: basic search,
advanced search, genome browse, and data download, which
will assist to retrieve, search, and visualize the information
of genomic components in each mouse genome. For the vi-
sualization of transcriptomics and proteomics data, the gene
and protein expression profiles were displayed through select-
ing tissues and inputting gene lists, and several projects with
equal biological replicates were analyzed through pairwise
comparison between any two samples in the transcriptomic
and proteomic projects. However, the metabolite values and
ion concentration values across various tissues were visualized
through selecting target tissues in the metabolome and met-
allome functional parts. MouseOmics performed the syntenic
analysis within five mouse species to identify divergence in the
genus Mus . MouseOmics supplied user-friendly interface, and
key mouse functional genes can be explored through browsing
and searching with localized open-resource software, such as
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Figure 1. Ov ervie w of the MouseOmics dat abase. All mouse multi-omics dat a collected in the MouseOmics dat abase w ere do wnloaded from public 
databases or resources, which comprise six parts: genome, transcriptome, proteome, metabolome, metallome, and variome. The collected multi-omics 
data were performed to re-annotate and re-analyze, and then stored in MySQL relational database and static files on server. The programming 
languages such as HTML, JS, Perl / Python, and R were installed on the server, and parsed and visualize the multi-omics data in back- and front end. 
Through the Apache, users can access the MouseOmics database with the user-friendly web interface. 
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keyword search, BLAST, and JBrowse2. Except that, we em-
bedded several useful tools like MISAweb for the identification
of microsatellite DNAs and specifically developed the enrich-
ment analysis tools of InterPro, GO, and pathway for mouse.

Web interface and usage 

The MouseOmics database presents a user-friendly interface
to explore extensive mouse multi-omics data for the commu-
nity. The current version of the MouseOmics database mainly
contains nine main pages, namely Home, Genome, Transcrip-
tome, Proteome, Metabolome, Metallome, Tools, and Help. 

The Home page constitutes a synoptic portal that strategi-
cally amalgamates the database overview, expedited naviga-
tion modules, curated links, real-time announcements, peer-
reviewed literature, and direct gateways to all omics reposi-
tories, thereby furnishing experimental biologists with an in-
tegrated and information-dense portal to the resource. The
Genome, Transcriptome, Proteome, Metabolome, and Met-
allome pages organize multi-omics projects by mouse strain 

and link each project to the downstream analysis. The Tools 
page provides both standalone utilities and embedded web ser- 
vices, while the Help pages guide users through every feature 
of MouseOmics. 

Mouse genome components 

The Genome page presents detailed information for each 

mouse species and genome sequencing project, such as basic 
information, assembly status, genome annotation, and publi- 
cation (Fig. 2 A). For each gene, MouseOmics supplies basic 
information and location on genome assemblies, and specifi- 
cally developed the gene and protein expression profiles across 
the transcriptome and proteome projects for M. musculus ,
strain C57BL / 6J (Fig. 2 B). As the gene detailed information,
the transcripts were supplied with basic information and ge- 
nomic location on genome assemblies across various mouse 
species, as well as the functional annotation. Within the panel 
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Figure 2. R epresentativ e screenshots f or genome module. ( A ) T he detailed page of mouse species and genome sequencing project. ( B ) T he detailed 
page of mouse genes, including basic information, gene location, and gene and protein expression profiles. ( C ) The detailed page of mouse mRNA or 
transcripts that included mRNA basic information, corresponding genomic location, and functional annotations. 
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f functional annotation, each functional unit has the detailed
nnotation from online web services and public protein func-
ion database via the corresponding hyperlinks (Fig. 2 C). 

ouse gene expression module 

he MouseOmics database systematically organizes represen-
ative transcriptome projects spanning different mouse tissues
nd life periods across an extensive panel of mouse strains
Fig. 3 A). For every transcriptome project, MouseOmics
resents exhaustive metadata, accession, primary publica-
ion, experimental design, tissue source, and treatment reg-
men, alongside quantitative expression matrices that re-
ort mean TPM (or FPKM) across biological replicates and
heir associated standard deviations (Fig. 3 B). Each expressed
ene is hyperlinked to a dedicated gene-detail page, en-
bling one-click retrieval of curated functional annotations
ithin MouseOmics. Each expressed gene is hyperlinked to

ts dedicated gene-detail page, enabling instant, one-click ac-
ess to curated functional annotations within MouseOmics.
he transcriptome project interface comprises two integrated

unctional units: “gene expression” and “pairwise compari-
on.” For the functional unit of “gene expression,” users ob-
ain an interactive expression heatmap that instantly visual-
zes the transcriptional profile after selecting a target tissue
ithin the project and entering a gene or gene list of inter-

st (Fig. 3 C and D). The pairwise comparison module em-
owers users to conduct head-to-head transcriptomic analyses
etween any two samples within a project, instantly reveal-
ng differential expression landscapes. Upon selecting query
nd subject samples together with the treatments of interest,
ouseOmics executes differential expression analysis and de-

ivers exhaustive results: a filtered list of DEGs meeting user-
efined adjusted P -value and fold-change thresholds, accom-
panied by downloadable tables and high-resolution, interac-
tive heatmaps, and volcano plots (Fig. 3 E and F). 

MISAweb and synteny viewer modules 

Microsatellite DNAs participate in a spectrum of funda-
mental processes—chromatin architecture sculpting, DNA
metabolism, and mismatch-repair fidelity—thereby furnish-
ing mice with an agile, heritable substrate for rapid ge-
nomic and phenotypic adaptation to environmental flux. The
MouseOmics database integrates MISAweb module, a dedi-
cated online microsatellite discovery engine that enables mi-
crosatellite DNA mining across 21 mouse reference genomes.
Users simply upload or paste a target genomic sequence;
within seconds, MISAweb returns an exhaustive catalogue of
microsatellites packaged in two compressed archives, includ-
ing detailed statistics and tabulated list of microsatellite DNAs
in the target mouse genomic sequence. 

To illuminate genomic evolution and divergence across the
21 curated mouse genomes, MouseOmics provides an interac-
tive synteny viewer that dynamically renders syntenic blocks
and homologous gene pairs between any single chromosome
of a reference genome and the complete chromosome com-
plement of any other mouse strain in the collection (Fig. 4 A).
On the back end, syntenic blocks and homologous gene pairs
have been stored in a normalized MySQL relational schema,
enabling sub-second retrieval of any requested chromosome-
to-genome comparison. Once users designate the query chro-
mosome in target mouse genome, and comparative mouse
strain, the submitted job triggers MouseOmics to render high-
resolution synteny viewer via Circos software and to deliver
a structured table enumerating block ID, query and subject
coordinates, score, and E -value for every detected syntenic re-
gion (Fig. 4 B). Within each syntenic block, homologous gene
pairs are rendered as collinear cartoon bars in the Circos plot
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Figure 3. R epresentativ e screenshots f or transcriptome module. ( A ) T he transcriptome project organiz ed b y mouse strains. ( B ) T he detailed inf ormation 
for each project and expressed genes in the project. ( C ) The functional unit of “gene expression.” ( D ) The gene expression of target gene or gene list in 
single or all tissue(s). ( E ) The functional unit of “pairwise comparison.” ( F ) The volcano plot of differentially expressed genes of the pairwise comparison 
in the project. 
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and listed in an interactive table; every block ID is hyperlinked
to enable instant drill-down into detailed gene-level annota-
tions within MouseOmics (Fig. 4 C). 

Functional enrichment modules 

MouseOmics has three kinds of functional enrichment mod-
ules, including InterPro, GO, and Pathway enrichment mod-
ules. On the back-end, MouseOmics maintains pre-indexed,
genome-specific flat files that house the complete InterPro,
GO, and MetaCyc functional annotations for every protein
encoded within 21 mouse reference genomes. InterPro and
Pathway enrichment modules have the same procedures to 

perform in MouseOmics. Via the web interface, users first 
select the desired genome from a dropdown box, then sup- 
ply a list of protein identifiers in the adjacent textbox, and 

finally define the statistical significance threshold by enter- 
ing a P -value cutoff derived from the hypergeometric test.
Upon submission, the analysis job is dispatched to the server 
queue for immediate processing. MouseOmics displays each 

enriched InterPro accession together with its curated descrip- 
tion, the corresponding MetaCyc pathway identifier and func- 
tional summary, and a concise catalog of all protein identi- 
fiers within the selected mouse genome that co-cluster into 
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Figure 4. Synteny viewer module in the MouseOmics database. ( A ) The selection of query and subject genomic regions across 21 mouse 
genomes. ( B ) The comparison between two genomic regions from any two genomes in MouseOmics. ( C ) The display of homologous gene pairs from 

an y tw o mouse genomes. 
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he same InterPro entry and pathway. Owing to the tripartite
rchitecture of the GO resource, the GO enrichment mod-
le in MouseOmics incorporates a dedicated workflow that
iscretely evaluates enrichment within the biological process,
olecular function, and cellular component ontologies. Fol-

owing the same streamlined submission used for InterPro
nd pathway enrichment, users only need to specify the de-
ired ontologies; the back end then executes the GO en-
ichment and returns the enriched terms together with their
ull textual descriptions for the queried mouse functional
enes. 

ase study showing interactions among multi-omic
ata 

he MouseOmics database allows users to search for any gene
f interest across genome, transcriptome, and proteome sec-
ions. Using slc11a2 as an example, we demonstrate how to
etrieve comprehensive information from MouseOmics. This
ene encodes the divalent metal transporter DMT1, which is
ssential for the absorption and transport of divalent metal
ons and for maintaining metal homeostasis, including iron
alance [ 40 , 41 ]. Starting from the homepage, users can en-
er “slc11a2” in the search box (Fig. 5 A). Upon clicking the
earch button, MouseOmics returns a list of all slc11a2 genes
cross various mouse strains. The results are displayed in a
isualized table that includes gene models, protein IDs, gene
Ds, mouse species, and chromosome numbers (Fig. 5 B). By
licking on a gene model hyperlink, users can access detailed
nformation, including basic gene features and functional an-
otations (Fig. 5 C). From this page, clicking on the gene ID hy-
perlink leads to a comprehensive gene summary that shows all
associated gene models, gene expression levels across multiple
RNA-seq projects, and protein abundance data from various
proteome projects (Fig. 5 D). Furthermore, clicking on the hy-
perlinks within the expression tables allows users to view de-
tailed gene expression values and protein abundances across
different tissues or conditions (Fig. 5 E and F). Thus, the search
function enables users to explore gene information across ge-
nomics, transcriptomics, and proteomics. The integrated in-
terface allows intuitive and easy visualization of multi-omics
data. 

MouseOmics consolidates the available metallome
projects—though still limited—into a strain-centric frame-
work that lets users quickly retrieve ion concentrations
for any tissue or condition (Fig. 6 A). The module offers
two complementary views: an overview page summariz-
ing project metadata, plotting aggregate ion levels and
supplying a sortable concentration table (Fig. 6 B), and a
single-tissue query panel where a tissue and either an ion
list or an individual ion can be selected (Fig. 6 C). One click
generates an interactive heatmap plus downloadable table
of concentrations for the chosen tissue or condition (Fig.
6 D), while clicking an ion symbol (e.g. Fe) opens line or
bar charts tracing that ion’s abundance across every met-
allome project in the database (Fig. 6 E). The metallome
module equips experimental biologists with a clear, data-
driven view of how metal content differs among tissues
and across mouse strains, deepening their understanding of
metal stress and accelerating the advancement of murine
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Figure 5. Search case for the slc11a2 gene. ( A ) Search function on the homepage. ( B ) List of slc11a2 homologs across mouse strains. ( C ) Gene-model 
det ail (ENSMUST0 0 0 0 0 023774) for slc11a2 gene in M. musculus C57BL / 6J. ( D ) Corresponding gene det ails (ENSMUSG0 0 0 0 0 023030) for the t arget 
gene model. ( E ) The gene expression values across tissues in the RNA-seq project. ( F ) Protein abundances across tissues from proteome datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkaf1031/8294351 by guest on 30 O

ctober 2025
Discussion and future perspectives 

The MouseOmics database provides an integrated platform
for accessing and leveraging multi-omics data consolidated
from diverse mouse studies. Recognizing the pivotal role
of multi-omics integration in advancing scientific discover-
ies, this resource consolidates extensive datasets spanning ge-
nomic annotations across multiple mouse strains, detailed mu-
tation profiles, and high-throughput data from multi-tissue or-
gans of mice at varying ages. 

Relative to other published mouse biological databases, in-
cluding MGD , GXD , ProteomicsDB, MMMDB, and IMPC, it
demonstrates unique capabilities as follows: (i) MouseOmics
is the first integrated database for six mouse omics types.
Meanwhile, MouseOmics is also the first database to compre-
hensively collect and assemble mouse metallomics data, en-
abling researchers to rapidly mine cross-omics biological in-
sights; (ii) MouseOmics collects multi-omics data from mice
across the entire lifespan. For example, metallomics data of
multiple organs from mice (aged from zero to three years),
and proteomic, transcriptomic, and metabolomic data span-
ning multiple stages and organs, including from embryonic 
stage to birth, birth to adulthood, and adulthood to aging; 
(iii) MouseOmics performed the syntenic analysis within five 
mouse species aiming to detect the divergence in the genus 
Mus ; (iv) MouseOmics embedded several useful tools like 
MISAweb, for the identification of microsatellite DNAs, and 

specifically developed the enrichment analysis tools of Inter- 
Pro, GO, and pathway for the mouse; and (v) MouseOmics 
is not restricted to specific architectures and will continuously 
update with other advanced omics data, including single-cell 
transcriptomics and metagenomics. 

In summary, MouseOmics serves as a crucial resource and 

tool for swiftly retrieving mouse—related gene information 

and understanding mouse multi-omics data. The data cov- 
erage in MouseOmics remains comparatively limited. As se- 
quencing technologies advance and become more widespread,
more datasets will emerge, and we will continually expand 

MouseOmics with representative mouse multi-omics datasets,
prioritizing developmental multi-omics profiles and metal- 
lomic dysregulation datasets. The integration of these data 
types, combined with the development of database tools, will 
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Figure 6. The utilization of metallome modules. ( A ) The overview of metallomic data organized in the database. ( B ) The concentration showing page of 
all ions in metallome project. ( C ) The search function of ion concentration of single tissue. ( D ) The concentration showing page of target ions in single 
tissue. ( E ) The display of Fe concentration across various metallome projects. 
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ffectively assist researchers in elucidating the roles of various
etal elements throughout the mouse lifespan. Such integra-

ion will help pinpoint the imbalances in transporters, pro-
eins, and metabolites resulting from the deficiency or excess
f specific metals, thereby facilitating a deeper understand-
ng of the interplay between metallomics and other omics
elds. In the future, we will develop more user-friendly ana-
ytical tools, including those for cross-omics correlation anal-
sis and protein–protein interaction networks, and gradually
uild new omics sections such as single-cell transcriptomics,
etagenomics, and pangenomics. 
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