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Reprogramming often yields heterogeneous cell fates, yet the underlying
mechanisms remain poorly understood. To address this, we developed
single-cell transcription factor sequencing (scTF-seq), asingle-cell technique
thatinduces barcoded, doxycycline-inducible TF overexpression and
quantifies TF dose-dependent transcriptomic changes. Applied to mouse
embryonic multipotent stromal cells, scTF-seq generated a gain-of-function
atlas for 384 mouse TFs, identifying key regulators of lineage specification,
cell cycle control and their interplay. Leveraging single-cell resolution, we
uncovered how TF dose shapes reprogramming heterogeneity, revealing
both dose-dependent and stochastic cell state transitions. We classified
TFsinto low-capacity and high-capacity groups, with the latter further
subdivided by dose sensitivity. Combinatorial scTF-seq demonstrated

that TF interactions can shift from synergistic to antagonistic depending
ontherelative dose. Altogether, scTF-seq enables the dissection of TF
function, dose and cell fate control, providing a high-resolution framework
to understand and predict reprogramming outcomes, advancing gene
regulation research and the design of cell engineering strategies.

Understanding and controlling cell fates through gene regulatory
programs, particularly through transcription factor (TF)-mediated
cell reprogramming, are critical objectives in biomedical research.
Past studies using the ectopic expression of single TFs or combina-
tions have identified ‘master regulators’ that influence various cellular
processes', including differentiation, transdifferentiation, dedif-
ferentiationand reprogramming®. Here, we collectively refer to these
processes as cell ‘reprogramming’. For instance, the ‘Yamanaka factors’

(OCT3/4,S0X2,KLF4 and c-MYC) canreprogram adult fibroblasts into
induced pluripotent stem cells>®.

However, reprogramming is typically characterized by pro-
nounced heterogeneity and inefficiency, posing a major challenge®”’.
This reprogramming heterogeneity is not solely due to cell-to-cell
variability of the starting population®'®, as advancements in single-cell
technology have revealed that cells can follow multiple branches
along areprogramming path". Inaddition, inhibiting proliferation or
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synchronizingthe cell cycle substantially increased the reprogramming
efficiency, emphasizingthe critical role of the cell cyclein modulating
acell'sreprogramming capacity’. Nevertheless, the molecular mecha-
nisms underlying cell fate branching and TF-cell cycle interaction
during reprogramming remain poorly understood. Another aspect that
has historically received relatively little attentionis the role of TF dose,

log,,(WPRE mean intensity)

although TFs are known to vary in copy number over several orders of
magnitude'. The dose of a TF does affect not only gene expression
levelsbutalso the set of targeted genes™ . Consequently, TF dose may
equally be keyin steering cell reprogramming and thus account for the
observed heterogeneity. The multifaceted nature of reprogramming is
one of the primary reasons why it remains challenging to collectively
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Fig.1|scTF-seq design and the corresponding TF overexpression atlas.

a, Schematic of the scTF-seq workflow. TF-ID, a unique barcode designed for
mCherry (as control) or each individual TF; forward and reverse, primers to
enrich TF-IDs. The arrayed screening schematic is created with BioRender.com.
b, Fluorescence images of mCherry (red) and nuclei (DAPI, blue) in C3H10T1/2
cells treated without (no dox) or with doxycycline (dox). Representative images
of more than three independent experiments. Scale bar =125 pm. ¢, Schematic
of the sequencing outputs of scTF-seq—count matrices of gene expression
in10x libraries (top) and ectopic TF-ID expression in TF-enrichment libraries
(bottom) for each sequenced cell. d, Percentage of cell barcodes associated with
TF-IDsin10x or TF-enrichment libraries. Colors represent nine independent
scTF-seq experiments (also referred to as ‘batches’, see color legend ine). Error
barsrepresent the mean + s.d. e, UMAP of scTF-seq data involving 45,987 cells

and 384 TFs after quality control and preprocessing (referred to as ‘TF atlas’).
Colorsrepresent batches. f, Natural log-transformed TF expression levels

(TF dose) in cells overexpressing individual TFs. Colors represent cell density
(number of neighbors) after randomly sampling up to 500 cells foreach TF. g,
Left: RNAscope images for DAPI, WPRE (proxy for TF dose), ESR2-ORF in ESR2
(top) and control (bottom) cells. All fluorescence channels were merged for cell
segmentation, indicated by the red (cell boundary) and purple (expanded cell
boundary) outlines. Representative images of two independent experiments.
Scale bar =100 um. Right: single-cell RNAscope quantification showing the log-
normalized mean intensity of WPRE versus ESR2-ORF in control and ESR2 cells.
Fitted model = LOESS (Extended Data Figs.1and 2). RT, reverse transcription;
LOESS, locally estimated scatterplot smoothing; UMAP, uniform manifold
approximation and projection; enrich., enrichment.

study heterogeneity-contributing factors and their influence on cell
reprogramming, especially when using bulk assays that are constrained
by population-averaging readouts.

Toanswer these questions, asystematic quantitative TF screenat
the single-celllevelis essential to link TF function with reprogramming
efficiency. TF overexpression would thereby be preferred as it can
induce cell reprogramming more efficiently than CRISPR activation
dueto post-translational regulation’®". In the past 5 years, several stud-
ies haveimplemented TF overexpression screens by coupling pooled
TF overexpression with high-throughput readouts of single-cell RNA
sequencing (scRNA-seq) or single-cell multiomics'®'®?°. However,
none has systematically investigated the roles of TF dose, cell cycle
andtheirinterplayin steering cell reprogramming. To address this gap,
we developed single-cell TF sequencing (scTF-seq), aligning doxycy-
cline (dox)-inducible barcoded overexpression of individual TFs with
transcriptomic changes captured by scRNA-seq. This allowed us to
map reprogramming properties of each TF and its dose at single-cell
resolution. We then conducted scTF-seq on mouse embryonic multi-
potent stromal cells (MSCs) for 419 mouse TFs in parallel. After rigid
quality controls, the scTF-seq assays yielded a high-quality dataset
that tabulates the TF overexpression level and respective TF-induced
transcriptomic change for each of 45,978 cells linked to 384 TFsand 7 TF
combinations. Our approaches identified previously undescribed cell
reprogramming capacities of both known and uncharacterized TFs. In
addition, we systematically studied heterogeneous molecular and cel-
lular responses resulting from TF dose, stochasticity and/or cell cycle
dynamics. Finally, targeted combinatorial TF analysis revealed that the
same combination of TFs caninteract synergistically and antagonisti-
cally depending on the TF dose. Our TF overexpression clone library,
single-cell TF gain-of-function atlas and analytic frameworks serve as
valuable resources for achieving a mechanistic understanding of TF
rolesin governing cell states.

Results

Constructing the scTF-seq library and single-cell atlas

To establish scTF-seq, we built adox-induciblelentiviral open reading
frame (ORF) library of 419 TFs, each tagged with a unique barcode

(termed TF-ID hereafter) close to the 3’ UTR, enabling precise TF iden-
tification and quantification through 3’ scRNA-seq (Fig. 1a,b and Sup-
plementary Table1; Methods). Notably, viral particles were produced
byindividually packaging each vector to avoid barcode recombination
and ensure more efficient and controllable TF overexpression than
pooled virus packaging as used in most published screens®'¢'52,

To assess the functionality of the scTF-seq library, we intro-
duced it into mouse MSCs (C3H10T1/2)* through arrayed lentiviral
packaging and transduction, enabling high transduction efficien-
cies and dox-induced overexpression of individual TFs (Fig. 1a and
Supplementary Notes 1-4). We chose C3H10T1/2 cells for their
multipotency to differentiate into adipocytes, chondrocytes, oste-
oblasts or myocytes, thus providing a diverse range of cell fates to
investigate TF-driven reprogramming?**, To correct for spontane-
ous differentiation of C3H10T1/2 cells when reaching confluence?*
and benchmark TF-induced changes, we included confluent and
non-confluent mCherry-overexpressing cells as controls, and adipo-
genic cocktail-treated and Myog-overexpressing cells as references
(Adipo ref and Myo ref; Methods). The transcriptomes of cells from
ninebatches were profiled using droplet-based scRNA-seq, while TF-IDs
wereenriched and robustly detected in parallel (Fig.1a,c,d and Supple-
mentary Note 5; Methods). After TF-ID assignment to cells and stringent
quality control to remove low-quality cellsand doublets (Extended Data
Fig.1a, Supplementary Table 2 and Supplementary Note 5; Methods),
we obtained 45,978 cells covering 384 individual TFs and 7 TF combi-
nations (detailed information is presented in the following sections).
The number of cells (on average 116 cells per TF or TF combination)
was uniformly distributed among TFs and batches, supporting the
advantage of array-based sample preparation (Extended Data Fig. 1b).
Leveraging the TF-enrichment library as a highly accurate and sensitive
readout of the TF-ID, we quantified the TF overexpressionlevelinacell
by thelog-transformed unique molecular identifier (UMI) count of its
assigned TF-ID (referred to fromnow on as TF dose). Batch effects were
systematically evaluated and effectively corrected, allowing robust
dataintegration (Fig. le and Supplementary Note 6).

As designed, the array-based lentiviral transfection and trans-
duction strategies allow the implementation of a high multiplicity

Fig. 2| TFs directinglineage differentiation and immunomodulation.

a,b, UMAP plot of the integrated TF atlas with control, functional and proliferating
cells (referred to as the ‘functional TF atlas’). Colors represent assigned TFs (a)
and clusters (b). ‘Ctr.conf” and ‘Ctr.non.conf’ in arepresent confluent and non-
confluent control (mCherry-overexpressing) cells, respectively. Colored circles
inb highlight clusters having gene expression profiles related to myogenic,
osteogenic, adipogenic lineages orimmunomodulation (Inflammatory).

¢, Heatmap showing a pairwise Pearson correlation of functional TF cells
annotated by TF (in column) and batch (in row). Cells are ordered by hierarchical
clustering. The red dashed box represents the transcriptomic similarity of cells
reprogrammed by FOS and ATF TF families. d, Dot plot showing a functional

cell expression profile enrichment of each TF in the four main differentiation
lineages of multipotent stromal stem cells. Only TFs having at least 25 functional

cells and enriched in at least one of the four lineages with adjusted P< 0.05 are
shown. e, Fluorescence images of lipids droplets (stained with Bodipy, yellow) and
nuclei (stained with DAPI, blue) in CEBPA, MYCN, RHOX12, PPARG and mCherry
(control) cells after 5 days of dox-induced overexpression. Representative images
of twoindependent experiments, with one to two independent wells for each.
Scale bar =100 pm. f, Standard boxplot (Methods) showing the quantified lipid
scores (Bodipy area/DAPI area on the images shown in e) of individual TFs and the
control. Data were collected from two independent experiments, with one to two
independent wells for each. *P<0.05, *P< 0.01, **P< 0.001, pairwise two-sided
ttest followed by false discovery rate (FDR) correction. See Supplementary

Table 5and Methods for statistics and exact Pvalues (Extended Data Fig. 3). Myo,
myogenic; osteo, osteogenic; adipo, adipogenic.
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of infection (MOI; Supplementary Notes 2 and 3), leading to broad
viral copy number variations. This, together with differences in tran-
scriptional activity driven by random transgene integration and pro-
moter fluctuation, likely contributes to the substantial dose variation
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observed across cells for most TFs (Fig. 1f). We validated that TF-ID
counts correlate well with actual TF ORF expression using multiplex
RNAinsitu hybridization (RNAscope; Fig.1g and Extended DataFig.1c).
Thissupportsthe use of TF-ID counts as areliable proxy for exogenous
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TF expression both at the RNA and protein level, which is a sensible
approach given the generally reasonable correlation between mRNA
and protein abundance across various contexts®. Finally, we deter-
mined that a wide dose range is critical for enhancing sensitivity in
detecting differentially expressed genes (Extended Data Fig. 2a), uncov-
ering both linear and nonlinear (and non-monotonic) dose-related
effects missed in prior studies (Extended Data Fig. 2b-d).

Identifying TFs directing lineage differentiation

As the activation of lineage developmental genes generally occurs in
the GO/G1 phase”, we focused on GO/G1 cells (Extended Data Fig. 2e
and Supplementary Note 7) to study the roles of TFs in directing line-
age differentiation. By quantifying TF-driven transcriptomic variation,
we identified a subset of TF-overexpressing cells (simplified as ‘TF
cells’ hereafter) that were transcriptomically similar to controls and
labeled them as ‘non-functional’ (Supplementary Note 8). This was
commonly observed among TFs but typically only in a subset of TF
cells, implying that TF overexpression tends to induce various degrees
of transcriptomic reprogramming. Upon closer inspection, we found
that higher doses correlate with more pronounced transcriptomic
changes, indicating TF dose as a primary determinant of this repro-
gramming heterogeneity (Supplementary Note 8). Subsequently, we
performed clustering on the TF atlas excluding non-functional TF cells
(Fig. 2a,b and Extended Data Fig. 3a,b; Methods). Clusters 2,3 and 5
showed strikingly higher levels of lineage markers Bglap2, Fabp4 and
Mylpf (Extended Data Fig. 3¢), representing osteogenic, adipogenic
and myogenic programs, respectively. Adipo and Myo ref cells colo-
calized with clusters 3 and 5, respectively (Fig. 2a,b), validating the
adipogenic and myogenic identities of these two clusters. Cluster 8
showed high expression of interferon-stimulated genes like Isg15 and
was enriched for inflammatory pathways (Extended Data Fig. 3¢,d).
Cells reprogrammed by HEY1 (ref. 28), LZTS2 (ref. 29), HNF4A*° and
ZFP692 were predominantly distributed in cluster 8. Despite the lack
of clear functional information associated with inflammation for
these TFs, the colocalization of their cells in cluster 8 with IRF3 cells
(awell-established immunomodulator®) suggests their role in regulat-
ing inflammatory response genes.

We then computed TF-cell similarities to infer functional mod-
ules that govern the same gene expression programs (Extended Data
Fig. 3e; Methods). As exemplified in Fig. 2c, pronounced intrafamily
and interfamily correlations were detected among CDX, HOX, and DLX
TFs, consistent with their shared role in anterior-posterior pattern-
ing and their common evolutionary origin®’. However, correlations
were less evident between HOXA13 and most TFs in these families
(Fig. 2c), corroborating a distinct role for HOXA13 (refs. 33,34). Analo-
gous functional characteristics were also observed for TFs with known
physical interactions, such as the activator protein 1 (AP-1) formed by
cross-family FOS and ATF family members®. These results emphasize
the value of our scTF-seq atlas for exploring TF interactions and func-
tional analogies.

Gene set enrichment analysis (Methods) recovered known
MSC lineage-specific TFs, such as RUNX2, PAX9 and GATA2 for
osteogenesis®***’; HOXB7, MYOG and MYODI for myogenesis*®™*%;
NKX3-1 for chondrogenesis*’; and SMAD3, PPARG and CEBPA for

adipogenesis**™*° (Fig. 2d). We also identified TF candidates not yet
described asimplicated in MSC lineages, including OTX2 in osteogen-
esis, HMGB3 in chondrogenesis and MYCN and RHOX12 in adipogen-
esis, as experimentally validated for the latter two TFs (Fig. 2d-f and
Extended Data Fig. 3f). However, unlike CEBPA, PPARG and RHOX12
cells, MYCN cells lacked Plin4 expression (Supplementary Table 3), a
late adipocyte differentiation marker essential for lipid droplet asso-
ciation®. This is consistent with the smaller, scattered lipid droplets
observedin MYCN cells (Fig. 2e,f). Thus, while all these TFs promoted
adipogenesis, scTF-seq datasuggest that MYCN may act using adistinct
mechanism, whichis explored further below.

Quantifying TF reprogramming capacity and dose sensitivity
Wethen quantified the relative transcriptome variation between each
cell and the centroid of controls (Fig. 3a; Methods). As expected, the
transcriptomic alterations were overall greater in TF cells compared
to control ones, as well as in functional TF cells relative to their non-
functional counterparts (Extended Data Fig. 4a,b). To compare the
exogenously expressed TF dose to the endogenous one in normal physi-
ological contexts, we contrasted the minimal functional dose at which
anoverexpressed TF leads to a substantial transcriptomic difference to
the dose observed in vivo (Methods). We found that, for about half of
TFs, the exogenous functional dose aligns with its physiological range,
including TFs such as Runx2in plasmacytoid dendritic cells, Meis2
in neuron subsets and Cebpa in adipocytes (Fig. 3b—e and Extended
DataFig. 4c).Notable exceptionsinclude Pparg, lipid ligand-activated,
Nfkb1,inhibited in steady-state by IkB and various homeobox TFs that
tend to function combinatorially (Fig. 3d and Extended Data Fig. 4c).
By visualizing transcriptomic change over TF dose, we found that TFs
differ in how their effect is modulated by dose (Fig. 3b—f). Some TFs
induce substantial transcriptomic changes even at very low doses, while
othersrequire higher doses to achieve their effect plateau.

To better capture the TF dose-response relationships, we mod-
eled the transcriptomic change in function of TF dose using a logistic
model (Supplementary Note 9). Leveraging the model parameters, we
defined TF reprogramming capacity and dose sensitivity, and broadly
classified TFs into the following three major groups (Fig. 3f,g, Sup-
plementary Table 4 and Supplementary Note 9): (1) 32 high-capacity
and high-dose-sensitive TFs, including HOX and CDX TFs; (2) 44
high-capacity and low-dose-sensitive TFs, such as POU5F1, that
required a high dose to reach high capacity and (3) 158 low-capacity
TFs like VDR that induced no to only very mild transcriptomic effects
across awide dose range.

Toexplore the functional relevance of TF reprogramming capacity,
we analyzed mutational constraint data, including the probability of
loss-of-functionintolerance and loss-of-function observed/expected
upper bound fraction, from gnomAD***° for human orthologs (Sup-
plementary Note 10). We found that high-capacity TFs are substantially
enriched amonggenesintolerant to loss-of-function mutations (Sup-
plementary Table 5), suggesting amore substantial impact oncellular
and ultimately organismal phenotypes compared to low-capacity
ones*®*, Enrichment analysis on TF classes showed that zinc-finger
TFswere under-represented and homeodomain TFs over-represented
among high-capacity TFs (Supplementary Table 5; Methods). Moreover,

Fig. 3| Characterizing TF dose sensitivity and reprogramming capacity.

a, UMAP plot of the TF atlas after regressing out the heterogeneity specific

to control cells, colored by overall transcriptomic changes (Methods). b-e,
Comparison of physiological and exogenous dose for RUNX2 (b), MEIS2 (c),
CEBPA (d) and PPARG (e). Top scatterplots indicate the change in overall
transcriptomic response (distance in PCA space to control cells) over various
doses. The dashed line represents the minimal functional dose at which the
overall transcriptomic change is above 0.23. Bottom boxplots show the range of
dosesin the given cell type (boxes representing 25th and 75th percentiles, with
1.5x1QR as whiskers and the mean as the white dot). Endogenous TF expression

forinduced adipogenesis or myogenesis (teal), the endogenous TF expressionin
mCherry-overexpressing cells (blue) and this expression added to the exogenous
expression (purple).f, Dot plot showing the scaled, overall transcriptomic
change of TF-overexpressing cells over TF dose. Each dot represents a cell. Each
row represents a TF. Color bars on the left represent TF groups categorized
accordingto dose sensitivity and reprogramming capacity. g, Scatterplot
showing the overall transcriptomic change of one representative TF of each

TF category across TF dose. The lines represent the fitted logistic regression
(Extended DataFig. 4).
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Smallamino acids, fraction of small amino acids; aliphatic amino acids, fraction
of aliphatic amino acids; Xle, fraction of leucine and isoleucine; hydrophobic
amino acids, fraction of hydrophobic amino acids; negative charge, fraction of
negatively charged amino acids; Ics, low sequence complexity scores; 3 turn,
fraction of 3 turns; o helix, fraction of o helices.

protein feature analysis revealed that high-capacity TFs are enriched
for smallamino acids like proline and serine, low sequence complexity
and B turns that represent energetically favored nucleation points™,
while being depleted in aliphatic amino acids (including leucine and
isoleucine), hydrophobic amino acids, negative charge and « helices
(Fig. 4, Extended Data Fig. 4d and Supplementary Table 6; Methods).
Similar compositional biases have beenrevealed as evolutionarily con-
served patterns associated with phase-separating proteins, including
specific TFs and coregulators whose condensate formation ability is
thought to have akey rolein gene regulation®*,

While the wide dose range is a key feature of scTF-seq, some TFs
may still not reach high enough doses for accurate capacity assessment.
A power analysis revealed that the predicted probability of correctly
classifying TFs (at the maximum dose >3.5) as having low capacity was
77% (Extended Data Fig. 4e-g; Methods). This indicates that the dose
levels reached in this study are sufficient to accurately resolve the
regulatory capacity for most TFs (198 of 234) in MSCs.

Reprogramming heterogeneity is driven by dose and
stochasticity
TF dose strongly contributes to reprogramming heterogeneity; however,
overall transcriptomic changes lack directionality and gene-specific
resolution (Fig.3a). Therefore, we also investigated whether individual
genesor gene sets respond consistently or variably to TF dose, thereby
facilitating the emergence of different forms of reprogramming het-
erogeneity. We identified TFs inducing heterogeneous responses by
systematic clustering (Extended Data Fig. 5a—c; Methods). Focusing
first on lineage-driving TFs, heterogeneous cell states within a single
lineage could be explained by monotoniceffects of TF dose onearly and
late differentiation genes. For example, the adipogenic gene expression
signature (termed adiposcore hereafter) of CEBPA cells strongly cor-
related with Cebpa dose (Fig. 5a). Early adipogenesis regulator Cebpd
was down-regulated, whereas the master regulator of adipocyte dif-
ferentiation Pparg and mature adipocyte markers like Fabp5 and C3
were upregulated with increasing Cebpa doses (Fig. 5b).

Beyond monotonic effects within one lineage, some TFsinduced
non-monotonic dose-response patterns across gene sets, driving dis-
tinct cell fate specifications and thus contributing to amore complex

form of reprogramming heterogeneity. Using KLF4 as an example,
three subclusters of KLF4 cells exhibited substantial differences in
Klf4 doses and gene expression patterns (Fig. 5c-f). Low-dose KLF4
cells (cluster 1) uniquely expressed genes related to gene ontology
(GO) terms such as ossification, skeletal system morphogenesis and
cardiac chamber morphogenesis (Fig. 5f,g). Moderate Klf4 doses
upregulated genes associated with regulation of cellular component
size, protein-containing complex assembly and intracellular transport,
while high Kif4 doses induced genes involved in regulating develop-
mental growth, epithelial cell development and face development
(Fig. 5f,g). These findings suggest that KIf4 dose variations direct cells
toward different functional states, regulating differentiation, cel-
lular organization and development, respectively. Similar patterns
were observed for many other TFs, including RUNX2, ETV1, EGR1,
GRHL2 and ESR2, and were reproducible across batches (Extended
Data Figs. 5d-f and 6a-h). Using RNAscope, we probed the TF dose
(using WPRE, aviral elementin the TF-ID-containing mRNA, as a proxy;
Methods) and marker genes that are specific to particular KLF4 or ESR2
subpopulations, and cross-validated their dose-dependent expres-
sion patterns (Methods). In line with the scTF-seq results, RNAscope
quantification accurately captured the mutually exclusive expression
of Gluland Postn inlow versus intermediate/high KLF4 cells, as well as
the non-monotonic dose responses of Gng12 and Aspn in ESR2 cells
(Fig. 5h-jand Extended Data Fig. 6i-k).

While TF doseis akey factor influencing cell fate, we also identified
TFsincluding MEIS2 and MYOG that reproducibly stratified cells into
distinct states despite similar TF doses (Fig. 5Sk-m and Extended Data
Figs. 5d and 7a-d). For Meis2, intermediate doses generated multiple
cell states (Fig. 5k,1, clusters 1-4) with minimal differences in dose
distribution and each characterized by the expression of unique gene
modules (Fig. 5mand Extended Data Fig. 7e,f). In fact, MEIS2 cells that
were conservatively enriched for modules 2 and 3 displayed opposing
dose relationships across two batches, thereby obscuring any con-
sistent dose-dependent trend in the aggregate data (Extended Data
Fig. 7g-I) and suggesting the emergence of multiple alternative cell
states at moderate Meis2 doses. At higher Meis2 doses, cells appeared
to converge on amore homogeneous cell state (Fig. 5m and Extended
DataFig. 7f). Altogether, these findings indicate that, while TF doseis a
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critical determinant of cell fate, additional, possibly stochastic factors
likely have important roles in regulating cell fate decisions.

Dissecting the impact of cell cycle on reprogramming

One factor that also contributes to transcriptomic heterogeneity,
alongside TF dose, is the cell cycle, given its fundamental role in stem
cell self-renewal and lineage determination”*, To address our limited

understanding of how the cell cycle interacts with TFs and their dose,
and contributes to reprogramming heterogeneity, we leveraged our
scTF-seq datato systematically study TF overexpressionand cell cycle
dynamicsinteractions. Cell cycle phase was inferred and adjusted for
eachcell, and the proportion of cellsin each adjusted phase was com-
paredacross all TFs (Fig. 6a, Extended Data Fig. 2e and Supplementary
Notes7and 11). As expected, known cell cycle-driving TFssuch as E2F2
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Fig. 5| Reprogramming heterogeneity induced by TFs. a,b, Adiposcore (a;
Methods) and expression level of adipogenesis-related genes (b) in CEBPA cells
atdifferent doses and batch-paired control cells (dose = 0). ¢,d, KLF4 and batch-
paired control cells colored by Kif4 dose (c, left), cluster (c, right), category (d,
top) or batch (d, bottom). Fitted model = LOESS. e, Dose distribution of KLF4
cellsineach cluster shownin ¢ (right). f, Heatmap displaying log-normalized
expression (zscore scaled by gene) of the top differentially expressed genes of
KLF4 clusters (shownin ¢ (right) and d (top)). Colored outlines indicate marker
genes for respective clusters from e. g, Top ten unique biological process
termsidentified by GO enrichment analysis on the substantially differentially
expressed genes of each KLF4 cluster (shown in ¢ (right)). h, RNAscope images
showing DAPI, WPRE (proxy for TF dose), Postn and Glul expression in control
and KLF4 cells. Representative images of two independent experiments. Red
and purple outlines indicate the cell boundary and expanded cell boundary,
respectively. Scale bar =100 pm. i, Scatterplot showing the expression of

Glul (top) or Postn (bottom) in KLF4 cells (colored by the clusters showninc
(right)) and batch-paired control cells in function of Kif4 dose. j, Single-cell
quantification of RNAscope (as shown in h) showing the log-normalized mean
fluorescence intensity of WPRE (proxy for TF dose) versus Glul or Postn in KLF4
and control cells. Fitted model = GAM. k, UMAP plots of MEIS2 and batch-
paired control cells colored by Meis2 dose (top) or cluster (bottom). I, Violin
plot showing the dose distribution of MEIS2 cellsin each cluster shownink.m,
Dose-response curves for the scores of five distinct gene expression modules
regulated by MEIS2. Each module represents the substantially differentially
expressed genes from the individual MEIS2 clusters in k. The same color scheme
used for the clustersinkis applied to the corresponding modules here. Fitted
model = GAM. See Supplementary Table 5 and Methods for statistics and exact
Pvalues (Extended Data Figs. 5-7). Ctr, clusters containing fewer than 60% TF
cells; GAM, generalized additive model; norm., normalized; pos. reg., positive
regulation.

(ref. 56), T’ and MYCN*® substantially increased the proportion of S
and G2/M cells (Fig. 6b). Beyond discrete phase classification, which
overlooks the circular and continuous nature of the cell cycle, we exam-
ined the density distributions of cell cycle scores. One-dimensional
distributions revealed that E2F2 overexpression primarily shifted cells
toward high S scores, while T and MYCN increased both S and G2/M
scores (Fig. 6¢). Two-dimensional density estimation further clarified
that E2F2 may not only drive entry into the S phase but also block cells
from progressing to G2/M (Fig. 6¢c and Extended Data Fig. 8a-d). This
aligned with previous findings showing that stabilized E2F2 activity
throughout the cell cycle accelerates G1/S transitionin the short term
but initiates replication stress, DNA damage and apoptosis, thereby
impairing long-term cell fitness®.

Interestingly, the proportion of S and G2/M cells generally
increased with rising T and E2f2 doses (Fig. 6d). However, TFs such
as MYCN, RUNX2 and PAX9 exhibited a non-monotonic relation
betweendose and cell cycle, withthelargest fraction of Sand G2/M cells
observed at intermediate doses (Fig. 6d and Extended Data Fig. 8e).
This prompted us to explore how TFs dose-dependently coordinate cell
cycle dynamics and lineage differentiation, revealing, for example, for
adipogenesisthat cell proliferation and the adiposcore were mutually
exclusive in CEBPA or PPARG cells (Fig. 6e). This aligns with the estab-
lished notion that lineage differentiation, including adipogenesis,
requires cell cycle exit”*, Indeed, p21, encoding a cyclin-dependent
kinase inhibitor critical for harmonizing cell cycle exit and adipo-
cyte differentiation®®, was upregulated at high Cebpa or Pparg doses
(Fig. 6e).In contrast, cell cycle exit and cell differentiation were decou-
pledinhigh Mycn cells, as evidenced by the concurrent high adiposcore
and p21 expression in S and G2/M, and the observed accumulation of
lipid droplets alongside increasing nuclei counts (Figs. 2e and 6e and
Extended Data Fig. 3f). However, this aberrant differentiation under
high Mycn doses was accompanied by evident cell death (Fig. 6f). These
findings collectively underscore theintricate interplay among TFs, TF
dose, cell cycle dynamics and lineage differentiation.

Dose influences TF combination synergy or antagony
TFsdonotoperateinisolation and their effects depend on therelative
dose®% Yet, how one TF’s dose influences the effects of another TF is

poorly understood due to the complexity underlying combinatorial
analysis. To explore this, we selected TFs with strong lineage-driving
potential,including CEBPA, PPARG and MYCN for adipogenesis, MYOG
for myogenesis and RUNX2 for osteogenesis, and performed combi-
natorial scTF-seq experiments (Fig. 7a; Methods).

Using single-cell readouts, we evaluated whether TF pairsinduced
distinct cell states compared to those induced by either TF alone
(Methods). Typically, one TF dominated the transcriptomic outcome,
forming a directed network of TF dominance (Fig. 7b,c). Yet, pairs
such as CEBPA + MYCN, MYCN+MYOG and MYCN + RUNX2 produced
unique states not explainable as simple combinations of individual
TF effects, marked by distinct gene expression profiles (Fig. 7b and
Extended DataFig. 9a). Forinstance, CEBPA + MYCN uniquely upregu-
lated adipogenesis-related genes (Fabp4 and Gpd1l), suggesting a
synergistic interaction (Extended Data Fig. 9a). Interestingly, adipo-
genic TFs paired with either adipogenic or lineage-diverting partners
had synergistic or antagonistic effects, respectively, on adipogenic
capacity (Extended Data Fig. 9b). These findings were substantiated
by the respectively higher or lower lipid score for MYCN + CEBPA or
MYOG + CEBPA compared to CEBPA cells (Extended Data Fig. 9¢,d).

We theninvestigated how TF dose shapes combinatorial effects.
For overall cellidentity, we found that any TF with much greater doses
than another was able to overcome the dominant effect, except for
PPARG, possibly due to its low dose sensitivity (Fig. 7d, Extended Data
Fig.9e and Supplementary Table 4). Unique combinatorial states often
required high doses (Fig. 7d). Additionally, TF dose sensitivity could
shiftin competitive contexts. For example, MYOG was highly dose sensi-
tivealone, whereasit was mostly dominated by other less dose-sensitive
TFs at low doses (Fig. 7d, Extended Data Fig. 9e and Supplementary
Table 4). MYCN, despite lower dose sensitivity than CEBPA, dominated
over CEBPA when they were at similar doses (Fig. 7d, Extended Data
Fig. 9e and Supplementary Table 4). TF combinations also exhibited
dose-dependent effects on adipogenic capacity, with someinteractions
being non-monotonic (Fig.7e).Forinstance, CEBPA + MYCN synergized
globally, yet MYCN at intermediate levels antagonized adipogenesisin
high Cebpa cells (Fig. 7e and Extended Data Fig. 9b). Conversely, the
highest adipogenic capacity of the CEBPA + PPARG combination was
observed atalow Pparg dose, asurprising finding given PPARG’s role as

Fig. 6 | Interactions between TFs, the cell cycle and differentiation
(adipogenesis). a, UMAP plot of the TF atlas colored by adjusted cell cycle
phase (Supplementary Note 7). b, Bar plot showing the fraction of cellsin the
adjusted phase for each TF. The total number of cells is indicated in brackets.
AFisher’s exact test was performed between confluent control cells (Ctr.conf)
and each TF. In addition to Ctr.conf, only TFs and the non-confluent control
cells (Ctr.non.conf) that tested significantly (FDR-adjusted P < 0.05) are
visualized here. The top three TFs and controls are highlighted in red. ¢, Density
plots showing the distributions of S and G2/M scores of TF cells (T, E2F2 or
MYCN inred) compared to confluent control cells (Ctr.confin teal). d, Bar plots

showing the fraction of cells in each adjusted cell cycle phase across binned
doses of T, E2f2 or Mycn. e, Heatmaps showing the transcriptomic adiposcore
and the mean expression level of p21in CEBPA, PPARG and MYCN cells, which
arebinned according to their adjusted cell cycle phase and TF dose. Bins with
less than three cells were excluded (white square). f, Fluorescence images
showing the viability of control, CEBPA and MYCN cells, indicated by Pl staining
inred (Supplementary Note 12). Nuclei were stained with Hoechst in blue.
Representative images of two independent experiments. Scale bar =200 pm.
See Supplementary Table 5 and Methods for statistics and exact Pvalues
(Extended Data Fig. 8). P, propidiumiodide.
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Fig. 7 | Dose-dependent effects of interactions between TFs. a, UMAP plot
showing the positions of single and combinations of TFs with respect to all other
tested TFs and control cells. b, Percentage of five nearest neighbors to which
each combinatorial TF (TF1+ TF2) cellis closest. ¢, Schematic representation
ofthedominance of each TF inferred from b. For example, RUNX2 dominates
other TFs because combining RUNX2 with another TF results in transcriptomes
that closely resemble those of RUNX2-only cells. d, Percentage of five nearest
neighbors to which each combination cell is closest within a pair of dose bins.
Bins were determined by uniformly splitting the interval between O and the
maximum dosage, with an additional bin ata dose of 0. The color scale represents

the percentage of cells closest to TF1, TF2 or the control cells, respectively,
represented using a bilinear interpolation between green, pink and gray. The
circle represents the percentage of cells closest to the TF1 + TF2 cells, with a

full circle meaning that all cells were closest to TF1+ TF2. e, Transcriptomic
adiposcore between different dose bins. The color scale ranges from the maximal
to the minimal adiposcore for each combination of TFs. The value of the maximal
adiposcore isindicated in the corresponding bin for each combination.

f, Dose-response curves for control cells with only CEBPA cells (black) or with
MYCN + CEBPA cells (orange). Fitted model = LOESS (Extended Data Fig. 9). NN,
nearest neighbors.
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amaster regulator of adipogenesis (Fig. 7e)*. Finally, we observed that
dose-dependent synergism can be gene-specific. CEBPA + MYCN syn-
ergistically activated adipocyte markers (Fabp4, Adipoq), while other
adipogenesis-related genes (Pparg, PlinI) switched between synergy
and antagonism depending on Cebpa dose (Fig. 7f and Extended Data
Fig. 9f). These nonlinear and gene-specific interactions reflect the
complexity of regulatory architectures, necessitating TF dose-resolved
approaches for deeper insight.

Discussion

Numerous studies have highlighted the transformative impact of TF
dose on molecular and cellular states”>'>*°°, However, the substantial
cellular heterogeneity observed upon TF overexpression in ex vivo
experiments contrasts with the precise control of cell fate alterations
in vivo. This discrepancy highlights a gap in our understanding of
how cellular programs intricately respond to variations in TF dose.
To address this, we developed scTF-seq, ascalable approach that ena-
bles the following: (1) identifying lineage regulators and functional
modules, rendering the resulting TF atlas acomprehensive reference
for discovering TFs thatinduce specific phenotypes of interest (Fig. 2)
and (2) leveraging a broad range of TF doses across thousands of cells
(Fig. 1) to systematically, quantitatively and reproducibly map the
influence of TF dose on cell reprogramming at the single-cell level.
This unique capability distinguishes scTF-seq from other large-scale
single-cell'®®2%¢” or bulk®***° TF screening strategies (Figs. 3-7).

By exploring thisintricate relationship between TF dose and func-
tion, we were able to stratify TFs into the following three distinct cat-
egories: low versus high-capacity TFs with the latter further subdivided
into ‘low’ or ‘high’ dose-sensitive groups (Fig. 3). Although the biologi-
calmeaning of this TF classificationis not yet fully clear, high-capacity
TFs show greater loss-of-function intolerance and are enriched for
phase-separation-related features (Fig. 4), pointing to a potential
connection between TF capacity, regulatory impact and condensate
formation**~*, A TF’s dose sensitivity may also be highly relevant to
how TFs exert their function in response to stimuli or developmental
signals. For example, most HOX and CDX TF family members feature
a high-capacity and high dose sensitivity, aligned with their known
influencein development through a concentration gradient’®”". In con-
trast, POUSF1is a high-capacity, but low-dose-sensitive TF, consistent
with observations that the highest reprogramming efficiencies were
reached at the highest PouSfI overexpression levels®*’>”>, Many TFs
appeared to have low capacity, exemplified by vitamin D3 receptor
VDR, whichislikely ineffective without a sufficient supply of its ligand.
We thus cannot rule out that certain TFs might have different classifica-
tions depending on factors such as the probed system, stimuli or even
used approach. Furthermore, the definition of low-capacity TFs may
alsobe influenced by the maximum dose achieved (Fig. 3).

Within high-capacity TFs, our findingsilluminate the crucial role of
TF dose in modulating cell states and driving reprogramming hetero-
geneity (Fig.5). However, because our dataare fromasingle snapshot,
it remains difficult to infer the exact trajectory, that is, whether the
observed TF-driven nonmonotonic expression patterns reflect true cell
fate branching or, alternatively, progressive state transitions™. Future
time-resolved studies will be essential to disentangle this complex
relationship. Moreover, not all observed cell state transitions were
strictly dose-dependent (Fig. 5). This may reflect the stochastic nature
of genetranscription, arising from the dynamicinterplay amongtran-
scriptional processes (such as TF-DNA binding kinetics), epigenetic
modifications and post-transcriptional events inindividual cells™ .

Alternatively, dose-independent cell state transitions may be
influenced by more deterministic factors such as the cell cycle phase
duringinitial TF overexpression’, although our observations indicate
that theinfluence of the cell cycle can extend beyond the starting cell
population (Fig. 6). Several TFs, including master regulators RUNX2
and PAX9, exhibit a complex, non-monotonic interplay between the

cellcycleand TF dose. Thisimplies that such TFs can function asrheo-
stats, regulating dose-dependent entry into the cell cycle to control
terminal differentiation, consistent with previous observations for the
TF MITF®°, We also revealed that MYCN challenges the conventional
requirement for cell cycle exit in terminal differentiation, display-
ing a unique dynamic where cells actively cycled while concurrently
expressing adipogenic genes (Fig. 6). Unraveling how MYCN regulates
thisintriguing state will necessitate more investigations, but it reflects
MYCN'’s pleiotropic role in controlling multiple cellular processes
underlying organogenesis’®.

Furthermore, our study underscores the non-monotonic,
gene-specific dose dependency of TF interactions (Fig. 7), possibly indi-
cating diverse roles of implicated TFs in mediating various aspects of
generegulation, such as controlling chromatin accessibility, regulatory
elementinteractions and gene activation>®'. The observed complexity
in TF interactions points to the critical challenge of determining opti-
mal doseregimes for sets of TFs required to generate specific cell states.

In summary, our study not only sheds light on the pivotal role of
TF doseincellular reprogramming but also opens avenues for further
exploration. scTF-seq’s agnostic nature to the cell system or species,
coupled with its potential to uncover regulatory TF properties, posi-
tions it as a valuable tool for future research. However, certain limita-
tions of the current study should also be acknowledged such as the
lack of temporal resolution, emphasizing the need for investigating
reprogramming over time. Inaddition, future iterations of the analysis
should consider incorporating additional modalities, such as chroma-
tinaccessibility, to unravel molecular mechanisms underlying TF dose
effects. Thisintegrative approach would hold promise for deepening
ourunderstanding of TF-mediated changesin the chromatinlandscape
and their implications for cellular reprogramming.
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Methods

The experiments conducted in this study did not require approval from
aspecific ethics board.

Key resources table

Primer sequences, key resources (like cell lines, bacteria strains, rea-
gents, compounds and commercial assays) and their sources and iden-
tifiers, and software versions can be found in Supplementary Table 7.

Experimental model and subject details

HEK293T and C3H10T1/2 cells were used in this study. Detailed pro-
tocols for cell culture and differentiation, lentivirus production and
transduction were described in Supplementary Notes1-3.

Experimental details

Barcoding and cloning of TF ORF libraries. Barcoded dox-inducible
lentiviral expression vectors carrying TF ORFs (pEXPRESS) were gen-
erated individually using the Gateway cloning system in two steps. In
the first step, barcoded destination vectors were generated by intro-
ducing random nucleotides to the upstream region of the 3’ LTR of
pSIN-TRE-GW-3xHA-puroR vector. Two fragments were amplified from
the pSIN-TRE-GW-3xHA-puroR vector using Kapa HiFi ready mix with
0.3 uM Enrich_F3 and 0.3 uM pTREP-BC-RamR, 0.3 pM pTREP-vec-R
and 0.3 uM pTREP-BC-RamF, respectively. The PCR program was as
follows: (1) 98 °Cfor3 min, (2) 98 °Cfor30s, (3) 63 °Cfor30s, (4) 72°C
for 5 min, repeat steps 2-4 for 15 cycles and (5) 72 °C for 5 min. After
purifying both PCR products using a1% agarose gel and a gel purifica-
tion kit, the two fragments were assembled using a Gibson assembly
mix according to the manufacturer’sinstructions. Assembled plasmids
(termed pTREP-ID vector hereafter) were then purified using a DNA
Cleanand Concentrator purificationkit and transformed into one-shot
ccdB survival 2 TIR resistant competent cells. Successful colonies
were then inoculated to growth medium containing Ampicillin and
Chloramphenicol for miniprep and validation. In the second step, TF
ORFswere transferred from generated entry clones® to pTREP-ID vec-
tors using LR Clonase Il enzyme mix, producing pEXPRESS plasmids.
Stbl3 one-shot competent cells were then transformed with pEXPRESS
and grown on ampicillin (100 pg ml™) plates overnight. Colonies were
picked and transferred to Luria-Bertani with ampicillin for miniprep
or midiprep. The barcodes (termed TF-IDs hereafter) and TF ORF on
the pEXPRESS were examined by Sanger sequencing with the usage of
microsynth standard primers: EGFP-C-Rev and TET-CMV-for.

Single TF overexpression screening, 10x scRNA-seq sequenc-
ing and TF-ID enrichment. Only TF-IDs with a hamming distance
greater than 2 nucleotides were retained within each experiment for
demultiplexing. Inaddition, C3H10T1/2 cells were transduced with the
lentivirus particles carrying each barcoded TF ORF expression vector
individually. Puromycinselection was performed to enrich successfully
transduced cells. TF expression was induced by dox (2 pg ml™) treat-
ment during 5daysincells placed in abasic culture medium refreshed
every48h.Then, cells were collected (Supplementary Note 1), pooled
andloadedinthe10x Genomics Chromium Controller targeting 8,000~
10,000 cells per experiment. Because C3H10T1/2 cells might undergo
spontaneous differentiation once reaching 100% confluency, mCherry
was overexpressed under the same conditions in both non-confluent
and confluent C3H10T1/2 cells asa control. Unless specified, all control
cells were considered in subsequent analyses by default. To ensure
reproducibility, negative controls (mCherry-overexpressing) and
positive controls (cellsinduced for differentiation using an adipogenic
cocktail or cells overexpressing TFs showing known reprogramming
effects) wereincludedin every experiment. At least six TFs were shared
in each experiment with other experiments as biological replicates
(Supplementary Table1). AllscRNA-seq experiments were performed
using Chromium Single Cell Expression 3’ Reagent Kits after the

manufacturer’s instructions. To specifically enrich the TF-ID, an addi-
tional PCR amplification targeting the 10x barcode, UMl and TF-ID were
conducted using the full-length cDNA product of the 10x scRNA-seq
library. The cDNAlibrary (6 ng), BC_vec_target_10X_F1vector-specific
forward primer (0.3 pM), Truseq_universal_adaptor (0.3 pM) and Kapa
HiFiready mix (1x) were used after the program—(1) 98 °Cfor 30s, (2)
tencyclesof 98 °Cfor10s,63 °Cfor20 sand 72 °Cfor30sand (3) 72 °C
for 5 min. The resulting amplicons were then purified using Ampure
beadsand further amplified to generate TF-ID-enriched libraries com-
patible with 10x cDNA libraries with Truseq_D7_adapter (0.3 pM),
Truseq_universal_adapter (0.3 uM) and Kapa HiFi ready mix (1x) after
the program—(1) 98 °Cfor 30 s, (2) four cyclesof 98 °Cfor10's, 63 °C for
20sand72°Cfor30sand(3) 72 °Cfor 5 min. The TF-ID-enriched librar-
ieswerethen purified twice using 0.6x Ampure beads and pooled with
theregular 10x sequencing libraries, which were sequenced together
on the lllumina NextSeq 500/Hiseq 4000/NovaSeq 6000 platform
using the dual-index configuration after manufacturer’s instructions
to obtain amean depth of 50,000 reads per cell.

Constructing adipogenic and myogenic reference cells. Forinvitro
adipogenic differentiation, mCherry-overexpressing cells were first
cultured in the basic culture medium supplemented with 100 ng ml™
BMP4 for 3 days. Then the induction medium was added for 2 days,
which was composed of the basic culture medium and MDI cocktail
containing1 pM dexamethasone, 0.5 mM 3-isobutyl-1-methylxanthine
and 167 nM insulin. The cells were maintained in the basic culture
medium supplemented with 167 nMinsulin until collection. Myogenic
reference cells were generated by transducing Myog (encoding a key
myogenesis regulator*®) and inducing its overexpressionin C3H10T1/2
cells for up to 5 days (Supplementary Note 3).

TF pair screening. To generate data with combinations of TFs,
C3H10T1/2 cells were transduced with the first TF and selected with
puromycin (Supplementary Note 3). Thereafter, the selected cells were
transfected withasecond TF (virus MOl around 3). The overexpression
of both TFs was induced by dox following the conditions described in
the above single TF overexpression screening section.

Multiplex RNA in situ hybridization. TF or mCherry-overexpressing
cells were prepared through transduction, puromycin selection and
2 pug ml™doxinductionas described in Supplementary Note 3 and the
abovessingle TF overexpression screening section. TF-overexpressing
cells, with wild-type C3H10T1/2 and mCherry-noDox controls (trans-
duced with mCherry but lacking dox treatment), were seeded onto
individual wells of 96-well plates at ~-10% density. Multiplex RNA in situ
hybridization was performed on 96-well plates using RNAscope tech-
nology (Advanced Cell Diagnostics)® per the manufacturer’s instruc-
tions. Briefly, cells were fixed with 10% neutral buffered formalin for
30 minatreverse transcription, washed with PBS, dehydrated with 50%,
75% and 100% ethanol for 1 min each, and stored at —20 °C. RNAscope
was performed within the next 2 days. In situ probes against mouse
Glul, Postn, Gngl2, Aspn and lentiviral element WPRE were used in
combination with the RNAscope Multiplex Fluorescent Reagent Kit
v2 for target detection.

Validation of the adipogenic capacity of single TFs or TF pairs.
C3H10T1/2 cells were transduced with the barcoded TF ORF expres-
sion vector with mCherry (control), individual adipogenic TFs or TF
pairs, followed by Puromycin selection and 5 days of dox-induced TF
overexpression (Supplementary Note 3 and the above single TF over-
expression screening and TF pair screening sections). Cells were then
fixed with 4% PFA for 15 min at room temperature, permeabilized with
PBS and Triton and stained with fluorescence dyes—Bodipy 10 pg ml™
for lipids and DAPI for nuclei. Cells were incubated with dyes in PBS for
30 mininthe dark, washed twice with PBS andimaged. Image stacks (10
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perwell, 96-well plate) were collected for eachreplicate using the blue
and green channels with ax20/0.8 objective. Adipocyte differentiation
was quantified using an image preprocessing and analysis algorithm
per the developer’s instruction®*. The lipid score was defined as the
ratio of Bodipy signals to DAPI signals.

Quantification and statistical analysis

10x scRNA-seq data preprocessing and quality control. Basecalls
were performed using bcl2fastq. Sequencing reads were aligned and
quantified using Cell Ranger against the GRCm38 (mm10, Ensemb]
release 96) mouse reference genome with default settings to generate
count matrices of genes x cell barcodes. To match TF-IDs to cells, reads
were also mapped to the pEXPRESS vector sequence, where each TF-ID
nucleotide was replaced by ‘N’. TF-IDs from aligned reads at the location
of ‘Ns’ were extracted with 1 nt mismatch allowed and matched to the
corresponding cell barcodes and UMIs using an in-house framework,
TFseqTools (https://github.com/DeplanckeLab/TFseqTools), yielding
TF-IDs x cell barcodes read/UMI matrices.

All the data were loaded and processed on R. Doublet removal
and TF-ID assignments were performed per experiment as described
inSupplementary Note 5. Remaining cells from each experiment were
analyzed using Seurat®. TF dose was computed as In(1 + UMIs of the
assigned TF-ID). Low-quality cells were filtered out using the isOutlier
function of package scran®®, using an nmads cutoff of 4-6 of the lower
end tail depending on the gene expression matrix of individual experi-
ments. Cells with >10% or 15% of mitochondrial gene expression, >40%
or 60% of ribosomal RNAs and <75% of protein-coding genes were
also filtered out. TFs having <8 cells were excluded. Batch correction
and dataintegration were performed as described in Supplementary
Note 6. The clustree function from the clustree package was applied
to find an optimal resolution for clustering®. The exact resolution of
clustering was specified in downstream analyses. Cells and clusters
were visualized using uniform manifold approximation and projection.

Dose comparison with public data. To functionally compare the dose
reached by scTF-seq with that of alternative datasets, we obtained
MORF data from GSE216595 (ref. 16). The data were preprocessed
using the standard scanpy pipeline, and Fos-overexpressing and
mCherry-overexpressing cells were subsetted as provided by the origi-
nal authors. Differential expression for both scTF-seq and MORF data
was calculated using scanpy’s rank_gene_groups function with default
parameters (method = ttest, correction = Benjamini-Hochberg). Com-
mon differentially expressed genes were selected by selecting those
orthologs that were differential (scanpy’s score of >5). To compare
effect sizes at various doses, scTF-seq Fos-overexpressing cells were
subsetted by removing cells with a dose higher than a certain cutoff.

RNAscope quantification. Images of 25 fields, each with five Z
stacks, were collected for four fluorescence channels (blue, green,
red and infrared) per well (96-well plate) using a x20/0.8 objective.
After flat-field correction, the best focus among the five Z stacks was
selected for each field and channel. All fields with the best focus were
further fused and represented as pyramidal images. Cell segmenta-
tion was conducted using the cytoplasm model (cyto3) of Cellpose3
(ref. 88). The segmentation channel was generated by summing the
green, red and infrared channels, while DAPI was used as the nuclear
channel. A median cell diameter of 50 um was specified, and a10 pm
nuclear expansion was applied to capture signals near cellboundaries.
Mean fluorescence intensity was measured for each segmented cell
and corrected for background by subtracting the median intensity of
noncellular regions. Segmentations erroneously assigned to debris or
dirt were excluded based on their detected features, such as the small
cell size, abnormally low DAPI in the segmented cell region, or high
intensity of DAPI in the expanded cytoplasmic region. Cell clumps
were excluded based on a low ratio of expanded area to the total cell

area. Additionally, 1% of outliers at the extreme lower or upper tails
of the mean intensity distribution for each individual channel were
filtered out. Spillover between spectrally adjacent channels was mod-
eled using linear regression on control (mCherry-noDox or wild-type
C3H10T1/2) cells and corrected for TF and wild-type control cells when
the estimated slope exceeded 0.01.

Differential expression and enrichment analyses. Differential
expression analysis was performed on all detected genes using general-
ized linear models withbatch as a covariate, asimplemented in edgeR%.
Afalse discovery rate (FDR) cutoff 5% was used to select substantially
differentially expressed genes. ‘is.,TFoe’in Supplementary Table 3 indi-
cateswhether the differentially expressed genesin TF-overexpressing
orreference cells are the endogenous counterparts of overexpressed
TFs.Marker genes of cell types of interest and hallmark gene sets were
downloaded from MSigDB®° and PanglaoDB". A clustering resolution of
0.2was used for enrichment analysis of clusters on hallmark gene sets.
A customized gene set containing more mature adipocyte markers®
(Supplementary Note 13) was used to compute the adipocyte module
score (referred to as the adiposcore) by using the AddModuleScore
function from Seurat. Gene set enrichment analysis was performed
using the package fgsea”. Due to the relatively small number of gene
sets (adipocytes, chondrocytes, myoblasts and osteoblasts) being
analyzed, an FDR cutoff 5% was used. GO enrichment analysis was per-
formed using the enrichGO function from clusterProfiler’. GO terms
with more than 50% genes overlapping were excluded.

Cellular similarity analysis. To assess cellular similarities and identify
TFs that have similar biological functions (referred to as functional
modaules), pairwise Pearson correlation coefficients were computed
using the rcorr function of the Hmisc package®, in a PCA space that
was constructed fromthe first 50 PCs, and was inclusive of both control
and functional TF cells in G1 (default phase).

Calculation of overall transcriptomic change. To quantify the overall
transcriptomic change of the TF cells relative to the control cells, the
heterogeneity among control cells was regressed out per batch by
projecting cellsto a PCA space derived from control cells, before inte-
grating all G1 (adjusted phase) cells of TFs and controls from all batches.
Subsequently, a negative Pearson correlation between each celland the
centroid of control cells was computed in a unified high-dimensional
space, derived from the top 200 PCs of the integrated data. The result-
ant values were then adjusted by subtracting the mean of the negative
correlation between control cells and their centroid.

Comparison of endogenous and exogenous TF expression. The
physiological (in vivo) expression range of TFs was extracted for all
celltypesinthe CELLXGENE census database, covering over 150 anno-
tated single-cell datasets’®. The physiological, exogenous (TF dose in
the scTF-seq data) and endogenous (endogenous TF expression in
the scTF-seq data) TF expression levels were normalized against 13
housekeeping genes (Supplementary Note 14) covering a variety of
central cellular processes or systems such as cytoskeleton, translation
and ubiquitination. A minimal functional TF dose was defined for each
TF as the exogenous dose required to reach a strong transcriptional
effect (>0.23 overall transcriptomic change). The minimal functional
dose of a TF was then compared to the range (5-95% quantile) of physi-
ological doses found in the cell type with the highest expression of the
respective TF.

TF class and feature enrichment. TF classes were annotated according
to AnimalTFDB”. Fisher’s exact test was applied to compare the num-
ber of zinc-finger or homeodomain TFs across high- and low-capacity
TFs. TF features, including amino acid content, low complexity
score and B turn fraction as listed in Supplementary Table 6, were
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calculated by using the phase separation analysis and prediction clas-
sifier’?. A two-sided Wilcoxon Rank Sum test followed by FDR correc-
tion was applied to compare the distribution of TF features between
high-capacity TFs and low-capacity TFs. An adjusted P value of <0.05
was considered statistically significant.

Low-capacity power analysis. To determine the power to correctly
identify a TF as high capacity, we simulated lower maximal doses for all
76 high-capacity TFs. In particular, for each TF, we removed cells above
acertaindose threshold, reran the aforementioned logistic modeling
and determined whether the TF wassstill (correctly) classified as being
high capacity. By performing this analysis at different thresholds rang-
ing fromthe TF’'s max dose to adose of 2, we quantified the percentage
of TFs falsely classified as low capacity at this threshold. This percent-
age was then used to calculate for each low-capacity TF its probability
of beingfalsely classified as low capacity given its observed max dose
(Supplementary Table 4).

Cell state transition analysis. To identify TF cells that underwent
specialized cell state transitions, clustering analysis was performed on
control and functional TF cellsin G1 (adjusted phase) using aresolution
of 1.2 with the FindCluster function from Seurat. Clusters that were
predominantly composed of control cells were classified as control
clusters. The remaining clusters were annotated as functional clusters.
ATF withacertain proportion of its cells (5-95% cells for that TF) in at
least two functionally distinct clusters was deemed to be a candidate
steering cell state transition. TFs represented by fewer than 30 cellsin
total were excluded fromanalysis. To track cellular state divergence, for
eachremaining TF candidate, cellsin G1 (adjusted phase) were pooled
with their batch-paired control cells and reclustered. Control clusters
were defined as those in which fewer than 60% cells originated from
the focal TF. Monocle3 (refs. 98,99) was used to infer trajectory and
pseudotime using the control clusters as roots.

Analyses for TF pair screening. Cells overexpressing a pair of TFs
were detected as explained in Supplementary Note 15. The following
analyses were performed separately for each TF pair. We subsetted
cells that were assigned TF1+ TF2, TF1, TF2 or mCherry. Then we
assigned each cell to one of the four following groups: TF1+ TF2
(>4 UMIs for both TF1 and TF2), TF1 (>4 UMIs for only TF1), TF2 (>4
UMIs for only TF2) or control (all other cells). To determine whether
the TF pair cells grouped together into a state distinct from either
the TF1or the TF2 groups, we identified for each cell its five nearest
neighborsin PCA space (first 20 dimensions). We then quantified for
each cell within the TF1 + TF2 group the proportion of cells to which
it was closest in the other groups, and averaged this over all cells.
Cells were binned for both TFs into four uniform bins spanning the
range from O to the maximum loglp UMI counts, with an additional
bin for 0 UMI counts.

To detect genes that were uniquely expressed in TF pair cells, we
performed differential expression using Seurat’s FindMarkers. Spe-
cifically, for each cell within the TF1+ TF2 group that had at least 50%
TF1+TF2cells as nearest neighbor, we determined its closest matches
to either the TF1 or the TF2 groups by performing the five-nearest
neighbor analysis in PCA space (first 20 dimensions), and perform-
ing differential expression between the union of these cells with the
TF1+ TF2 cells. Genes unique to the TF1 + TF2 group were defined as
those with FDR-corrected P value of <0.05 and absolute fold change
of >1.5.

Statistics and reproducibility. P values of <2.2 x 107 or <2 x 1071¢
are the default cutoff in R. Statistics, sample sizes, multiple testing
corrections and exact P values are listed in Supplementary Table 5
when applicable. For the ¢ test, data distribution was assumed to be
normal, but this was not formally tested. Unless specified, P values

are visualized as NS =P > 0.05, *P< 0.05, *P < 0.01, **P< 0.001 and
**+p < (0.0001. By default, the band represents the 95% confidence
interval onthe smoothed mean of the specified model. If not specified,
boxes in standard boxplots indicate the first and third quartiles, the
lineindicates the median, and the whiskersindicate the first and third
quartiles expanded by 1.5x the interquartile range.

The data collection was not randomized. Data collection and
analysis were not performed in a blinded manner with respect to the
experimental conditions. No statistical method was used to prede-
termine the sample size. No data were excluded from the analyses, as
filtering steps were specified in the respective Methods.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Allraw and processed scTF-seq dataare available at ArrayExpress under
accession E-MTAB-13010. Uncropped microscopy images reported
in this paper are provided as Source data at figshare (https://doi.
0rg/10.6084/m9.figshare.29290625)'°°. Source data are provided
with this paper.

Code availability

All source code is available at GitHub (https://github.com/
DeplanckelLab/TF-seq) and Zenodo (https://doi.org/10.5281/
zen0do.16892802)'°",
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Extended DataFig. 2| A wide dose range generated by scTF-seq, related
toFig. 1. a, Volcano plots showing differential gene expression between
control (mCherry) and FOS cellsin our study (batch 9) and ref. 16. The g-value
istheadjusted Pvalue generated by the t test followed by FDR correction.

b, Dose-response curves (top) and exemplary UMAP plots (bottom) for the
expression of the top six shared up- and down-regulated genes in response
to FOS overexpression in the scTF-seq dataset. These genes were selected

by first filtering on significant (FDR <5%) differential expression in both the

scTF-seq and Joung et al.'® datasets, and subsequently selecting the top six
differentially expressed genesin ref. 16 dataset. ¢, UMAPs for the expressions of
the orthologous genes fromb onref. 16 dataset. d, Standard boxplots (Methods)
showing the distribution of fold changes when filtering the scTF-seq cells
according to several maximal dose cutoffs (red) compared to the distribution of
differential expression fromref. 16. e, UMAP plot of the TF atlas colored by cell
cycle phase assigned with a default Seurat cutoff of O for cell cycle scores.
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transcriptomic effect (circles) to the high endogenous dose observed in in vivo
single-cell datasets (gray bands, Methods). The minimal functional dose (see
d)is colored respectively in teal and red if it is above or below the physiological
dose. The small vertical lines indicate the maximal dose observed in our study
and are colored blue, except when the maximal dose falls below the highest dose

observed endogenously, in which case they are colored orange. d, Boxplots
showing the fraction of proline P, fraction of serine S, fraction of isoleucine |
across high-capacity and low-capacity TFs. p.adj, adjusted P value. Crossbars and
boxesrepresent mean + s.d. e, Sensitivity to identify a TF as being high-capacity
in function of the maximal dose reached by a TF. f, Overall transcriptomic change
compared to maximal dose, with the probability for a TF as being identified asa
false-negative, low-capacity TF highlighted in color. g, Predicted number of false-
negative, low-capacity TFs at various maximal dose bins. See Supplementary
Table 5and Methods for statistics and exact P values.
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Extended DataFig. 5| Discovery of candidate TFs associated with cell state identified by cell state transition analysis (see Methods) were plotted. d, UMAP
transition, related to Fig. 5. a, Clustering tree of the Seurat-based clustering plots of the phase-adjusted functional TF atlas (shown in b) with KLF4, RUNX2,
result of the phase-adjusted functional TF atlas (consisting of phase-adjusted ETV1,EGR1, GRHL2, ESR2, MYOG and MEIS2 cells highlighted (red for TFs

Gl cells, Methods), visualizing the relationships between clustering at different inducing the dose-dependent cell state transition, green for TFs exhibiting the
resolutions. The resolution 1.2 was used for the functional atlasin b to generate stochastic state transition). e, UMAP plots of RUNX2 cells and their batch-paired
an optimal number of clusters such that known lineage cells are separated. control colored by groups classified according to Runx2 dose (top) or batch

b, UMAP plots of the phase-adjusted functional TF atlas colored by the clustering (bottom). f, Heatmap displaying log-normalized expression (z score scaled by
result at resolution1.2. ¢, Heatmap showing the proportion of TF cells in each gene) of differentially expressed genes of high and low Runx2 and control (Ctr)
cluster relative to the total number of TF cells. Ctr.conf, confluent control cells; cells. Cells are ordered by Runx2 dose as indicated by the color bar on the left.

Ctr.non.conf, non-confluent control cells. Only controls and TF candidates
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Extended Data Fig. 6 | Examples showing dose-dependent cell state transition,
related toFig. 5.a,c,e,g, UMAP plots of ETV1(a), EGR1 (c), GRHL2 (e), or ESR2

(g) cells and their batch-paired control cells colored by category, batch, TF

dose, or cluster. Ctr.non.conf, non-confluent control cells; Ctr.conf, confluent
control cells. b,d,f,h, Violin plots showing the dose distribution of ETV1 (b),
EGR1(d), GRHL2 (f), or ESR2 (h) cells in the different clustersshownina,c, e,

g, respectively. p.adj, adjusted Pvalue.i, Scatter plot showing the expression

of Aspn (top) or GngI2 (bottom) in ESR2 cells (colored by the clusters shown in

g, right) and batch-paired control cells in function of Esr2 dose. Fitted model:

GAM.j, RNAscope images for DAPI, WPRE (proxy for TF dose), GngI2, and Aspn
expression in ESR2 cells. Wildtype C3H10T1/2 cells were used as the control. All
fluorescent channels were merged for cell segmentation, indicated by the red
(cellboundary) and purple (expanded cell boundary) outlines. Representative
images of two independent experiments. Scale bar =100 pm. k, Single-cell
quantification of RNAscope (as showninj) showing the log-normalized mean
intensity of WPRE (proxy for TF dose) versus Aspn (top) or Gng12 (bottom) in
control and ESR2 cells. Fitted model: LOESS. See Supplementary Table 5and
Methods for statistics and exact Pvalues.
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Extended Data Fig. 7| MYOG and MEIS2 showing dose-dependent and
stochastic cell state transition, related to Fig. 5.a,b, UMAP plots of MYOG and
batch-paired control cells colored by category or batch (a), cluster or dose (b).
Ctr.non.conf, non-confluent control cells; Ctr.conf, confluent control cells.

¢, Violin plot showing the dose distribution of MYOG cells in the different clusters
showninb. p.adj, adjusted Pvalue. d, UMAP plots of MEIS2 and batch-paired
control cells colored by condition (top) or batch (bottom). Ctr.non.conf,
non-confluent control cells; Ctr.conf, confluent control cells. e, UMAP plots of
MEIS2 and batch-paired control cells colored by the module scores based on
the top differentially expressed genes of each Control (Ctr) and MEIS2 cluster
(Cluster1to 5) shownin Fig. 5k. f, Scatter plots showing the module scores in
MEIS2 and batch-paired control cells along Meis2 dose. The module scores were
based on the top differentially expressed genes of each Control (Ctr) or MEIS2

cluster (cluster 1to 5) shown in Fig. 5k. Fitted model: GAM. g, UMAP plots of
MEIS2 cells from batch 4 (n =108 cells) colored by Meis2 dose or unsupervised
clustering results that were independently acquired on batch 4. h, Violin plot
showing the dose distribution of MEIS2 cells in the different clusters shown

ing. i, UMAP plots of MEIS2 cells from batch 4 colored by the module scores
based on the top differentially expressed genes of each Control (Ctr) and MEIS2
cluster (Cluster1to 5) shownin Fig. 5k. j, UMAP plots of MEIS2 cells from batch 9
(n =645 cells) colored by Meis2 dose or unsupervised clustering results that were
independently acquired on batch 9.k, Violin plot showing the dose distribution
of MEIS2 cells in the different clusters shown inj.1, UMAP plots of MEIS2 cells
from batch 9 colored by the module scores based on the top differentially
expressed genes of each Control (Ctr) and MEIS2 cluster (Cluster1to 5) shownin
Fig. 5k. See Supplementary Table 5and Methods for statistics and exact P values.
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Extended DataFig. 8| Cell cycle dynamics regulated by TFs and their doses,
related to Fig. 6. a-d, 2D density contour plots of S and G2/M scores showing cell
cycle dynamics of confluent (a, left) and non-confluent control (a, right), T (b),
E2F2 (c),and MYCN (d) cells. See Supplementary Note 7. The colors of contour
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and Methods for statistics and exact Pvalues.

lines represent the probability associated with the computed highest density

region. For example, 50% represents the region capturing 50% of the data points.
P, adjusted Pvalue. e, Bar plots showing the fraction of cells in each adjusted cell
cycle phase across binned doses of Runx2 or Pax9. See Supplementary Table 5
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Extended Data Fig. 9| Global and dose-dependent transcriptomic and
phenotypicinteractions between pairs of TFs, related to Fig. 7. a, Differential
expression between cells with a pair of overexpressed TFs compared to those
with asingle TF overexpression. Shown are log2-fold changes between TF1 + TF2
cellscompared to a set of reference cells, defined as the union of all 5-nearest
neighborssingle TF cells for each TF1+ TF2 cell. Significant differential
expression was defined using an FDR-adjusted p-value < 0.05 and absolute

log2 fold-change >1.5. Highlighted in orange are those genes that were up- or
down-regulated in both comparisons, and that constitute genes that are uniquely
regulated in the combination cells. b, Transcriptomic adiposcore between
control cells, single TF cells and TF1+ TF2 cells. ¢, Representative fluorescence

images of lipid droplets (stained with Bodipy, yellow) and nuclei (stained with
DAPI, blue) insingle TF and TF1 + TF2 cells. Scale bar, 500 um. d, Quantification of
the lipid score asin (c). Data were collected from two independent experiments,
with1-2independent wells for each. e, Scatter plot showing the overall
transcriptomic change across TF dose colored for the individual TFs involved in
combinatorial experiments. The lines represent the fitted logistic regression.

f, Dose-response curves for the expressions of all transcriptomic adiposcore
genes in control and CEBPA cells (black), compared to those for control and
MYCN + CEBPA cells (orange). Fitted model: LOESS. See Supplementary Table 5
and Methods for statistics and exact Pvalues.
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counting has been deposited at github (vector_sequence, https://github.com/DeplanckeLab/TF-seq). The following genome assembly was used: GRCh38, release 96
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downloaded from gnomAD (v4.0). TF class annotations were collected from AnimalTFDB (v4.0). Microscopy data reported in this paper will be shared upon request.
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Sample size Nine independent scTF-seq experiements were performed with some TFs involved in more than one experiment as replicates (as described in
the manuscript and metadata). 45978 cells covering 384 individual TFs and 7 TF pairs were used for the construction of scTF-seq atlas. Sample
sizes for this study were determined based on established empirical thresholds commonly used in single-cell omics to ensure robust detection
of biological signals and statistical reliability. For differential expression (DE) analysis, we required a minimum of 5 functional cells per TF to
retain sufficient power to detect expression changes while mitigating false positives from underpowered comparisons. For gene set
enrichment analysis (GSEA), which requires greater statistical resolution to assess pathway-level effects, we imposed a stricter threshold of
>25 functional cells per TF. To evaluate TF dose sensitivity, reprogramming capacity, and cell fate transitioning—analyses that demand finer
granularity to resolve dynamic or bifurcating behaviors—we restricted analysis to TFs with 230 cells. Cell cycle dynamics, which involve
partitioning cells into discrete phases (G1/S/G2M), required =50 cells per TF to ensure adequate representation across phases for statistical
testing. Statistic tests were performed for all the analyses as indicated in the Figure Legends and Methods accordingly.

Data exclusions  Single-cell RNA-seq samples showing low quality were excluded. The criteria are described in the Methods and Supplementary table 1. Cell
clumps, debris, and 1% of outliers at the extreme lower or upper tails of the mean intensity distribution for individual RNAscope image
channels were filtered out. The criteria are described in the Methods.

Replication At least six transcription factors (as described in the metadata) were involved in more than one scTF-seq experiment. The imaging of mCherry
expression was performed with three replicates. The profiling of mCherry fluorescence intensity was performed on two mCherry-
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overexpressing cell line, each with two replicates. RNAscope experiment was perfomed with at least two replicates. Validations of adipogenic
capacity of single TFs or TF pairs were performed with at least three replicates. Cell death staining was performed with three replicates. These
replicates successfully show consistent results.

Randomization  In this study, randomization was not performed due to the controlled experimental design and systematic nature of the scTF-seq approach.
Specifically:
1. Only one isogenic cell line was used for the TF overexpression screen, minimizing genetic and environmental variability.
2. Each TF or TF pair was tested in a targeted manner to directly assess its effect, with cells assigned to experimental groups based on the
TF(s) expressed (not random assignment). This ensures unambiguous attribution of observed outcomes to specific TFs.
3. Variability was addressed by performing nine independent scTF-seq experiments, with TFs tested across replicates. Batch effects were
mitigated computationally (integration/batch correction) rather than via randomization.
4. Statistical robustness was ensured by excluding TFs with low cell counts (e.g., <5 or < 25 functional cells for DE or GSEA analysis), which
serves a similar purpose to randomization in reducing noise from undersampled groups.
5. In single-cell perturbation screens, systematic testing of all factors under matched conditions (rather than randomized subsets) is standard
practice to enable direct comparisons and atlas-scale profiling.

Blinding The imaging of mCherry expression, lipid accumulation or cell viability, and RNAscope was performed blindingly. Blinding is not necessary for
other analyses as they are quantitative and no subjective interpretation is required.
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Flow Cytometry

Plots
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The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).
The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation C3H10T1/2 cells (Wildtype and mCherry overexpressing) were harvested by trypsinization, followed by quenching with
growth medium. Cells were washed with PBS and resuspended in ice-cold PBS with DAPI (1 ug/mL) on ice.
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Instrument BD LSR Fortessa 5-laser cell analyzer

Software Collection: BD FACSDiva 8.0.1
Analysis: FlowJo v10.10 and R v4.1.0

Cell population abundance Between 75-90 % events passed the FSC/SSC gating used for analyzing single cells, of which at least 95 % were alive based on
negative DAPI signal. Cells were not sorted further, just analyzed for mCherry fluorescence intensity.

Gating strategy Cells were gated based on FSC and SSC to select single cells. Live cells were gated based on negative DAPI signal (355nm -
450/50nm). Live cells were analyzed for mCherry signal (561nm - 610/20nm).

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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