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Dissecting the impact of transcription factor 
dose on cell reprogramming heterogeneity 
using scTF-seq
 

Wangjie Liu    1,2,6, Wouter Saelens    1,2,3,4,6, Pernille Rainer1,2,6, Marjan Biočanin1,2, 
Vincent Gardeux    1,2, Antoni Jakub Gralak    1,2, Guido van Mierlo    1,2, 
Angelika Gebhart    1,2, Julie Russeil    1,2, Tingdang Liu5, Wanze Chen    1,5   & 
Bart Deplancke    1,2 

Reprogramming often yields heterogeneous cell fates, yet the underlying 
mechanisms remain poorly understood. To address this, we developed 
single-cell transcription factor sequencing (scTF-seq), a single-cell technique 
that induces barcoded, doxycycline-inducible TF overexpression and 
quantifies TF dose-dependent transcriptomic changes. Applied to mouse 
embryonic multipotent stromal cells, scTF-seq generated a gain-of-function 
atlas for 384 mouse TFs, identifying key regulators of lineage specification, 
cell cycle control and their interplay. Leveraging single-cell resolution, we 
uncovered how TF dose shapes reprogramming heterogeneity, revealing 
both dose-dependent and stochastic cell state transitions. We classified 
TFs into low-capacity and high-capacity groups, with the latter further 
subdivided by dose sensitivity. Combinatorial scTF-seq demonstrated 
that TF interactions can shift from synergistic to antagonistic depending 
on the relative dose. Altogether, scTF-seq enables the dissection of TF 
function, dose and cell fate control, providing a high-resolution framework 
to understand and predict reprogramming outcomes, advancing gene 
regulation research and the design of cell engineering strategies.

Understanding and controlling cell fates through gene regulatory 
programs, particularly through transcription factor (TF)-mediated 
cell reprogramming, are critical objectives in biomedical research. 
Past studies using the ectopic expression of single TFs or combina-
tions have identified ‘master regulators’ that influence various cellular 
processes1–3, including differentiation, transdifferentiation, dedif-
ferentiation and reprogramming4. Here, we collectively refer to these 
processes as cell ‘reprogramming’. For instance, the ‘Yamanaka factors’ 

(OCT3/4, SOX2, KLF4 and c-MYC) can reprogram adult fibroblasts into 
induced pluripotent stem cells5,6.

However, reprogramming is typically characterized by pro-
nounced heterogeneity and inefficiency, posing a major challenge4,7–9. 
This reprogramming heterogeneity is not solely due to cell-to-cell 
variability of the starting population9,10, as advancements in single-cell 
technology have revealed that cells can follow multiple branches 
along a reprogramming path11. In addition, inhibiting proliferation or 
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although TFs are known to vary in copy number over several orders of 
magnitude13. The dose of a TF does affect not only gene expression 
levels but also the set of targeted genes13–15. Consequently, TF dose may 
equally be key in steering cell reprogramming and thus account for the 
observed heterogeneity. The multifaceted nature of reprogramming is 
one of the primary reasons why it remains challenging to collectively 

synchronizing the cell cycle substantially increased the reprogramming 
efficiency, emphasizing the critical role of the cell cycle in modulating 
a cell’s reprogramming capacity12. Nevertheless, the molecular mecha-
nisms underlying cell fate branching and TF–cell cycle interaction 
during reprogramming remain poorly understood. Another aspect that 
has historically received relatively little attention is the role of TF dose, 
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study heterogeneity-contributing factors and their influence on cell 
reprogramming, especially when using bulk assays that are constrained 
by population-averaging readouts.

To answer these questions, a systematic quantitative TF screen at 
the single-cell level is essential to link TF function with reprogramming 
efficiency. TF overexpression would thereby be preferred as it can 
induce cell reprogramming more efficiently than CRISPR activation 
due to post-translational regulation16,17. In the past 5 years, several stud-
ies have implemented TF overexpression screens by coupling pooled 
TF overexpression with high-throughput readouts of single-cell RNA 
sequencing (scRNA-seq) or single-cell multiomics16,18–20. However, 
none has systematically investigated the roles of TF dose, cell cycle 
and their interplay in steering cell reprogramming. To address this gap, 
we developed single-cell TF sequencing (scTF-seq), aligning doxycy-
cline (dox)-inducible barcoded overexpression of individual TFs with 
transcriptomic changes captured by scRNA-seq. This allowed us to 
map reprogramming properties of each TF and its dose at single-cell 
resolution. We then conducted scTF-seq on mouse embryonic multi-
potent stromal cells (MSCs) for 419 mouse TFs in parallel. After rigid 
quality controls, the scTF-seq assays yielded a high-quality dataset 
that tabulates the TF overexpression level and respective TF-induced 
transcriptomic change for each of 45,978 cells linked to 384 TFs and 7 TF 
combinations. Our approaches identified previously undescribed cell 
reprogramming capacities of both known and uncharacterized TFs. In 
addition, we systematically studied heterogeneous molecular and cel-
lular responses resulting from TF dose, stochasticity and/or cell cycle 
dynamics. Finally, targeted combinatorial TF analysis revealed that the 
same combination of TFs can interact synergistically and antagonisti-
cally depending on the TF dose. Our TF overexpression clone library, 
single-cell TF gain-of-function atlas and analytic frameworks serve as 
valuable resources for achieving a mechanistic understanding of TF 
roles in governing cell states.

Results
Constructing the scTF-seq library and single-cell atlas
To establish scTF-seq, we built a dox-inducible lentiviral open reading 
frame (ORF) library of 419 TFs, each tagged with a unique barcode 

(termed TF-ID hereafter) close to the 3′ UTR, enabling precise TF iden-
tification and quantification through 3′ scRNA-seq (Fig. 1a,b and Sup-
plementary Table 1; Methods). Notably, viral particles were produced 
by individually packaging each vector to avoid barcode recombination 
and ensure more efficient and controllable TF overexpression than 
pooled virus packaging as used in most published screens3,16,18–20.

To assess the functionality of the scTF-seq library, we intro-
duced it into mouse MSCs (C3H10T1/2)21 through arrayed lentiviral 
packaging and transduction, enabling high transduction efficien-
cies and dox-induced overexpression of individual TFs (Fig. 1a and 
Supplementary Notes 1–4). We chose C3H10T1/2 cells for their 
multipotency to differentiate into adipocytes, chondrocytes, oste-
oblasts or myocytes, thus providing a diverse range of cell fates to 
investigate TF-driven reprogramming22–24. To correct for spontane-
ous differentiation of C3H10T1/2 cells when reaching confluence21,25 
and benchmark TF-induced changes, we included confluent and 
non-confluent mCherry-overexpressing cells as controls, and adipo-
genic cocktail-treated and Myog-overexpressing cells as references 
(Adipo ref and Myo ref; Methods). The transcriptomes of cells from 
nine batches were profiled using droplet-based scRNA-seq, while TF-IDs 
were enriched and robustly detected in parallel (Fig. 1a,c,d and Supple-
mentary Note 5; Methods). After TF-ID assignment to cells and stringent 
quality control to remove low-quality cells and doublets (Extended Data 
Fig. 1a, Supplementary Table 2 and Supplementary Note 5; Methods), 
we obtained 45,978 cells covering 384 individual TFs and 7 TF combi-
nations (detailed information is presented in the following sections). 
The number of cells (on average 116 cells per TF or TF combination) 
was uniformly distributed among TFs and batches, supporting the 
advantage of array-based sample preparation (Extended Data Fig. 1b). 
Leveraging the TF-enrichment library as a highly accurate and sensitive 
readout of the TF-ID, we quantified the TF overexpression level in a cell 
by the log-transformed unique molecular identifier (UMI) count of its 
assigned TF-ID (referred to from now on as TF dose). Batch effects were 
systematically evaluated and effectively corrected, allowing robust 
data integration (Fig. 1e and Supplementary Note 6).

As designed, the array-based lentiviral transfection and trans-
duction strategies allow the implementation of a high multiplicity 

Fig. 1 | scTF-seq design and the corresponding TF overexpression atlas.  
a, Schematic of the scTF-seq workflow. TF-ID, a unique barcode designed for 
mCherry (as control) or each individual TF; forward and reverse, primers to 
enrich TF-IDs. The arrayed screening schematic is created with BioRender.com. 
b, Fluorescence images of mCherry (red) and nuclei (DAPI, blue) in C3H10T1/2 
cells treated without (no dox) or with doxycycline (dox). Representative images 
of more than three independent experiments. Scale bar = 125 μm. c, Schematic 
of the sequencing outputs of scTF-seq—count matrices of gene expression 
in 10x libraries (top) and ectopic TF-ID expression in TF-enrichment libraries 
(bottom) for each sequenced cell. d, Percentage of cell barcodes associated with 
TF-IDs in 10x or TF-enrichment libraries. Colors represent nine independent 
scTF-seq experiments (also referred to as ‘batches’, see color legend in e). Error 
bars represent the mean ± s.d. e, UMAP of scTF-seq data involving 45,987 cells 

and 384 TFs after quality control and preprocessing (referred to as ‘TF atlas’). 
Colors represent batches. f, Natural log-transformed TF expression levels 
(TF dose) in cells overexpressing individual TFs. Colors represent cell density 
(number of neighbors) after randomly sampling up to 500 cells for each TF. g, 
Left: RNAscope images for DAPI, WPRE (proxy for TF dose), ESR2–ORF in ESR2 
(top) and control (bottom) cells. All fluorescence channels were merged for cell 
segmentation, indicated by the red (cell boundary) and purple (expanded cell 
boundary) outlines. Representative images of two independent experiments. 
Scale bar = 100 μm. Right: single-cell RNAscope quantification showing the log-
normalized mean intensity of WPRE versus ESR2–ORF in control and ESR2 cells. 
Fitted model = LOESS (Extended Data Figs. 1 and 2). RT, reverse transcription; 
LOESS, locally estimated scatterplot smoothing; UMAP, uniform manifold 
approximation and projection; enrich., enrichment.

Fig. 2 | TFs directing lineage differentiation and immunomodulation.  
a,b, UMAP plot of the integrated TF atlas with control, functional and proliferating 
cells (referred to as the ‘functional TF atlas’). Colors represent assigned TFs (a) 
and clusters (b). ‘Ctr.conf’ and ‘Ctr.non.conf’ in a represent confluent and non-
confluent control (mCherry-overexpressing) cells, respectively. Colored circles 
in b highlight clusters having gene expression profiles related to myogenic, 
osteogenic, adipogenic lineages or immunomodulation (Inflammatory). 
c, Heatmap showing a pairwise Pearson correlation of functional TF cells 
annotated by TF (in column) and batch (in row). Cells are ordered by hierarchical 
clustering. The red dashed box represents the transcriptomic similarity of cells 
reprogrammed by FOS and ATF TF families. d, Dot plot showing a functional 
cell expression profile enrichment of each TF in the four main differentiation 
lineages of multipotent stromal stem cells. Only TFs having at least 25 functional 

cells and enriched in at least one of the four lineages with adjusted P < 0.05 are 
shown. e, Fluorescence images of lipids droplets (stained with Bodipy, yellow) and 
nuclei (stained with DAPI, blue) in CEBPA, MYCN, RHOX12, PPARG and mCherry 
(control) cells after 5 days of dox-induced overexpression. Representative images 
of two independent experiments, with one to two independent wells for each. 
Scale bar = 100 µm. f, Standard boxplot (Methods) showing the quantified lipid 
scores (Bodipy area/DAPI area on the images shown in e) of individual TFs and the 
control. Data were collected from two independent experiments, with one to two 
independent wells for each. *P < 0.05, **P < 0.01, ***P < 0.001, pairwise two-sided 
t test followed by false discovery rate (FDR) correction. See Supplementary 
Table 5 and Methods for statistics and exact P values (Extended Data Fig. 3). Myo, 
myogenic; osteo, osteogenic; adipo, adipogenic.
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of infection (MOI; Supplementary Notes 2 and 3), leading to broad 
viral copy number variations. This, together with differences in tran-
scriptional activity driven by random transgene integration and pro-
moter fluctuation, likely contributes to the substantial dose variation 

observed across cells for most TFs (Fig. 1f). We validated that TF-ID 
counts correlate well with actual TF ORF expression using multiplex 
RNA in situ hybridization (RNAscope; Fig. 1g and Extended Data Fig. 1c). 
This supports the use of TF-ID counts as a reliable proxy for exogenous 
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TF expression both at the RNA and protein level, which is a sensible 
approach given the generally reasonable correlation between mRNA 
and protein abundance across various contexts26. Finally, we deter-
mined that a wide dose range is critical for enhancing sensitivity in 
detecting differentially expressed genes (Extended Data Fig. 2a), uncov-
ering both linear and nonlinear (and non-monotonic) dose-related 
effects missed in prior studies (Extended Data Fig. 2b–d).

Identifying TFs directing lineage differentiation
As the activation of lineage developmental genes generally occurs in 
the G0/G1 phase27, we focused on G0/G1 cells (Extended Data Fig. 2e 
and Supplementary Note 7) to study the roles of TFs in directing line-
age differentiation. By quantifying TF-driven transcriptomic variation, 
we identified a subset of TF-overexpressing cells (simplified as ‘TF 
cells’ hereafter) that were transcriptomically similar to controls and 
labeled them as ‘non-functional’ (Supplementary Note 8). This was 
commonly observed among TFs but typically only in a subset of TF 
cells, implying that TF overexpression tends to induce various degrees 
of transcriptomic reprogramming. Upon closer inspection, we found 
that higher doses correlate with more pronounced transcriptomic 
changes, indicating TF dose as a primary determinant of this repro-
gramming heterogeneity (Supplementary Note 8). Subsequently, we 
performed clustering on the TF atlas excluding non-functional TF cells 
(Fig. 2a,b and Extended Data Fig. 3a,b; Methods). Clusters 2, 3 and 5 
showed strikingly higher levels of lineage markers Bglap2, Fabp4 and 
Mylpf (Extended Data Fig. 3c), representing osteogenic, adipogenic 
and myogenic programs, respectively. Adipo and Myo ref cells colo-
calized with clusters 3 and 5, respectively (Fig. 2a,b), validating the 
adipogenic and myogenic identities of these two clusters. Cluster 8 
showed high expression of interferon-stimulated genes like Isg15 and 
was enriched for inflammatory pathways (Extended Data Fig. 3c,d). 
Cells reprogrammed by HEY1 (ref. 28), LZTS2 (ref. 29), HNF4A30 and 
ZFP692 were predominantly distributed in cluster 8. Despite the lack 
of clear functional information associated with inflammation for 
these TFs, the colocalization of their cells in cluster 8 with IRF3 cells 
(a well-established immunomodulator31) suggests their role in regulat-
ing inflammatory response genes.

We then computed TF–cell similarities to infer functional mod-
ules that govern the same gene expression programs (Extended Data 
Fig. 3e; Methods). As exemplified in Fig. 2c, pronounced intrafamily 
and interfamily correlations were detected among CDX, HOX, and DLX 
TFs, consistent with their shared role in anterior-posterior pattern-
ing and their common evolutionary origin32. However, correlations 
were less evident between HOXA13 and most TFs in these families 
(Fig. 2c), corroborating a distinct role for HOXA13 (refs. 33,34). Analo-
gous functional characteristics were also observed for TFs with known 
physical interactions, such as the activator protein 1 (AP-1) formed by 
cross-family FOS and ATF family members35. These results emphasize 
the value of our scTF-seq atlas for exploring TF interactions and func-
tional analogies.

Gene set enrichment analysis (Methods) recovered known 
MSC lineage-specific TFs, such as RUNX2, PAX9 and GATA2 for 
osteogenesis36–39; HOXB7, MYOG and MYOD1 for myogenesis40–42; 
NKX3-1 for chondrogenesis43; and SMAD3, PPARG and CEBPA for 

adipogenesis44–46 (Fig. 2d). We also identified TF candidates not yet 
described as implicated in MSC lineages, including OTX2 in osteogen-
esis, HMGB3 in chondrogenesis and MYCN and RHOX12 in adipogen-
esis, as experimentally validated for the latter two TFs (Fig. 2d–f and 
Extended Data Fig. 3f). However, unlike CEBPA, PPARG and RHOX12 
cells, MYCN cells lacked Plin4 expression (Supplementary Table 3), a 
late adipocyte differentiation marker essential for lipid droplet asso-
ciation47. This is consistent with the smaller, scattered lipid droplets 
observed in MYCN cells (Fig. 2e,f). Thus, while all these TFs promoted 
adipogenesis, scTF-seq data suggest that MYCN may act using a distinct 
mechanism, which is explored further below.

Quantifying TF reprogramming capacity and dose sensitivity
We then quantified the relative transcriptome variation between each 
cell and the centroid of controls (Fig. 3a; Methods). As expected, the 
transcriptomic alterations were overall greater in TF cells compared 
to control ones, as well as in functional TF cells relative to their non-
functional counterparts (Extended Data Fig. 4a,b). To compare the 
exogenously expressed TF dose to the endogenous one in normal physi-
ological contexts, we contrasted the minimal functional dose at which 
an overexpressed TF leads to a substantial transcriptomic difference to 
the dose observed in vivo (Methods). We found that, for about half of 
TFs, the exogenous functional dose aligns with its physiological range, 
including TFs such as Runx2 in plasmacytoid dendritic cells, Meis2 
in neuron subsets and Cebpa in adipocytes (Fig. 3b–e and Extended 
Data Fig. 4c). Notable exceptions include Pparg, lipid ligand-activated, 
Nfkb1, inhibited in steady-state by IκB and various homeobox TFs that 
tend to function combinatorially (Fig. 3d and Extended Data Fig. 4c). 
By visualizing transcriptomic change over TF dose, we found that TFs 
differ in how their effect is modulated by dose (Fig. 3b–f). Some TFs 
induce substantial transcriptomic changes even at very low doses, while 
others require higher doses to achieve their effect plateau.

To better capture the TF dose–response relationships, we mod-
eled the transcriptomic change in function of TF dose using a logistic 
model (Supplementary Note 9). Leveraging the model parameters, we 
defined TF reprogramming capacity and dose sensitivity, and broadly 
classified TFs into the following three major groups (Fig. 3f,g, Sup-
plementary Table 4 and Supplementary Note 9): (1) 32 high-capacity 
and high-dose-sensitive TFs, including HOX and CDX TFs; (2) 44 
high-capacity and low-dose-sensitive TFs, such as POU5F1, that 
required a high dose to reach high capacity and (3) 158 low-capacity 
TFs like VDR that induced no to only very mild transcriptomic effects 
across a wide dose range.

To explore the functional relevance of TF reprogramming capacity, 
we analyzed mutational constraint data, including the probability of 
loss-of-function intolerance and loss-of-function observed/expected 
upper bound fraction, from gnomAD48,49 for human orthologs (Sup-
plementary Note 10). We found that high-capacity TFs are substantially 
enriched among genes intolerant to loss-of-function mutations (Sup-
plementary Table 5), suggesting a more substantial impact on cellular 
and ultimately organismal phenotypes compared to low-capacity 
ones48,50. Enrichment analysis on TF classes showed that zinc-finger 
TFs were under-represented and homeodomain TFs over-represented 
among high-capacity TFs (Supplementary Table 5; Methods). Moreover, 

Fig. 3 | Characterizing TF dose sensitivity and reprogramming capacity. 
a, UMAP plot of the TF atlas after regressing out the heterogeneity specific 
to control cells, colored by overall transcriptomic changes (Methods). b–e, 
Comparison of physiological and exogenous dose for RUNX2 (b), MEIS2 (c), 
CEBPA (d) and PPARG (e). Top scatterplots indicate the change in overall 
transcriptomic response (distance in PCA space to control cells) over various 
doses. The dashed line represents the minimal functional dose at which the 
overall transcriptomic change is above 0.23. Bottom boxplots show the range of 
doses in the given cell type (boxes representing 25th and 75th percentiles, with 
1.5× IQR as whiskers and the mean as the white dot). Endogenous TF expression 

for induced adipogenesis or myogenesis (teal), the endogenous TF expression in 
mCherry-overexpressing cells (blue) and this expression added to the exogenous 
expression (purple). f, Dot plot showing the scaled, overall transcriptomic 
change of TF-overexpressing cells over TF dose. Each dot represents a cell. Each 
row represents a TF. Color bars on the left represent TF groups categorized 
according to dose sensitivity and reprogramming capacity. g, Scatterplot 
showing the overall transcriptomic change of one representative TF of each 
TF category across TF dose. The lines represent the fitted logistic regression 
(Extended Data Fig. 4).
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protein feature analysis revealed that high-capacity TFs are enriched 
for small amino acids like proline and serine, low sequence complexity 
and β turns that represent energetically favored nucleation points51, 
while being depleted in aliphatic amino acids (including leucine and 
isoleucine), hydrophobic amino acids, negative charge and α helices 
(Fig. 4, Extended Data Fig. 4d and Supplementary Table 6; Methods). 
Similar compositional biases have been revealed as evolutionarily con-
served patterns associated with phase-separating proteins, including 
specific TFs and coregulators whose condensate formation ability is 
thought to have a key role in gene regulation52–54.

While the wide dose range is a key feature of scTF-seq, some TFs 
may still not reach high enough doses for accurate capacity assessment. 
A power analysis revealed that the predicted probability of correctly 
classifying TFs (at the maximum dose >3.5) as having low capacity was 
77% (Extended Data Fig. 4e–g; Methods). This indicates that the dose 
levels reached in this study are sufficient to accurately resolve the 
regulatory capacity for most TFs (198 of 234) in MSCs.

Reprogramming heterogeneity is driven by dose and 
stochasticity
TF dose strongly contributes to reprogramming heterogeneity; however, 
overall transcriptomic changes lack directionality and gene-specific 
resolution (Fig. 3a). Therefore, we also investigated whether individual 
genes or gene sets respond consistently or variably to TF dose, thereby 
facilitating the emergence of different forms of reprogramming het-
erogeneity. We identified TFs inducing heterogeneous responses by 
systematic clustering (Extended Data Fig. 5a–c; Methods). Focusing 
first on lineage-driving TFs, heterogeneous cell states within a single 
lineage could be explained by monotonic effects of TF dose on early and 
late differentiation genes. For example, the adipogenic gene expression 
signature (termed adiposcore hereafter) of CEBPA cells strongly cor-
related with Cebpa dose (Fig. 5a). Early adipogenesis regulator Cebpd 
was down-regulated, whereas the master regulator of adipocyte dif-
ferentiation Pparg and mature adipocyte markers like Fabp5 and C3 
were upregulated with increasing Cebpa doses (Fig. 5b).

Beyond monotonic effects within one lineage, some TFs induced 
non-monotonic dose–response patterns across gene sets, driving dis-
tinct cell fate specifications and thus contributing to a more complex 

form of reprogramming heterogeneity. Using KLF4 as an example, 
three subclusters of KLF4 cells exhibited substantial differences in 
Klf4 doses and gene expression patterns (Fig. 5c–f). Low-dose KLF4 
cells (cluster 1) uniquely expressed genes related to gene ontology 
(GO) terms such as ossification, skeletal system morphogenesis and 
cardiac chamber morphogenesis (Fig. 5f,g). Moderate Klf4 doses 
upregulated genes associated with regulation of cellular component 
size, protein-containing complex assembly and intracellular transport, 
while high Klf4 doses induced genes involved in regulating develop-
mental growth, epithelial cell development and face development 
(Fig. 5f,g). These findings suggest that Klf4 dose variations direct cells 
toward different functional states, regulating differentiation, cel-
lular organization and development, respectively. Similar patterns 
were observed for many other TFs, including RUNX2, ETV1, EGR1, 
GRHL2 and ESR2, and were reproducible across batches (Extended 
Data Figs. 5d–f and 6a–h). Using RNAscope, we probed the TF dose 
(using WPRE, a viral element in the TF-ID-containing mRNA, as a proxy; 
Methods) and marker genes that are specific to particular KLF4 or ESR2 
subpopulations, and cross-validated their dose-dependent expres-
sion patterns (Methods). In line with the scTF-seq results, RNAscope 
quantification accurately captured the mutually exclusive expression 
of Glul and Postn in low versus intermediate/high KLF4 cells, as well as 
the non-monotonic dose responses of Gng12 and Aspn in ESR2 cells 
(Fig. 5h–j and Extended Data Fig. 6i–k).

While TF dose is a key factor influencing cell fate, we also identified 
TFs including MEIS2 and MYOG that reproducibly stratified cells into 
distinct states despite similar TF doses (Fig. 5k–m and Extended Data 
Figs. 5d and 7a–d). For Meis2, intermediate doses generated multiple 
cell states (Fig. 5k,l, clusters 1–4) with minimal differences in dose 
distribution and each characterized by the expression of unique gene 
modules (Fig. 5m and Extended Data Fig. 7e,f). In fact, MEIS2 cells that 
were conservatively enriched for modules 2 and 3 displayed opposing 
dose relationships across two batches, thereby obscuring any con-
sistent dose-dependent trend in the aggregate data (Extended Data 
Fig. 7g–l) and suggesting the emergence of multiple alternative cell 
states at moderate Meis2 doses. At higher Meis2 doses, cells appeared 
to converge on a more homogeneous cell state (Fig. 5m and Extended 
Data Fig. 7f). Altogether, these findings indicate that, while TF dose is a 
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critical determinant of cell fate, additional, possibly stochastic factors 
likely have important roles in regulating cell fate decisions.

Dissecting the impact of cell cycle on reprogramming
One factor that also contributes to transcriptomic heterogeneity, 
alongside TF dose, is the cell cycle, given its fundamental role in stem 
cell self-renewal and lineage determination27,55. To address our limited 

understanding of how the cell cycle interacts with TFs and their dose, 
and contributes to reprogramming heterogeneity, we leveraged our 
scTF-seq data to systematically study TF overexpression and cell cycle 
dynamics interactions. Cell cycle phase was inferred and adjusted for 
each cell, and the proportion of cells in each adjusted phase was com-
pared across all TFs (Fig. 6a, Extended Data Fig. 2e and Supplementary 
Notes 7 and 11). As expected, known cell cycle-driving TFs such as E2F2 
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(ref. 56), T57 and MYCN58 substantially increased the proportion of S 
and G2/M cells (Fig. 6b). Beyond discrete phase classification, which 
overlooks the circular and continuous nature of the cell cycle, we exam-
ined the density distributions of cell cycle scores. One-dimensional 
distributions revealed that E2F2 overexpression primarily shifted cells 
toward high S scores, while T and MYCN increased both S and G2/M 
scores (Fig. 6c). Two-dimensional density estimation further clarified 
that E2F2 may not only drive entry into the S phase but also block cells 
from progressing to G2/M (Fig. 6c and Extended Data Fig. 8a–d). This 
aligned with previous findings showing that stabilized E2F2 activity 
throughout the cell cycle accelerates G1/S transition in the short term 
but initiates replication stress, DNA damage and apoptosis, thereby 
impairing long-term cell fitness59.

Interestingly, the proportion of S and G2/M cells generally 
increased with rising T and E2f2 doses (Fig. 6d). However, TFs such 
as MYCN, RUNX2 and PAX9 exhibited a non-monotonic relation 
between dose and cell cycle, with the largest fraction of S and G2/M cells 
observed at intermediate doses (Fig. 6d and Extended Data Fig. 8e). 
This prompted us to explore how TFs dose-dependently coordinate cell 
cycle dynamics and lineage differentiation, revealing, for example, for 
adipogenesis that cell proliferation and the adiposcore were mutually 
exclusive in CEBPA or PPARG cells (Fig. 6e). This aligns with the estab-
lished notion that lineage differentiation, including adipogenesis, 
requires cell cycle exit27,55,60. Indeed, p21, encoding a cyclin-dependent 
kinase inhibitor critical for harmonizing cell cycle exit and adipo-
cyte differentiation60, was upregulated at high Cebpa or Pparg doses 
(Fig. 6e). In contrast, cell cycle exit and cell differentiation were decou-
pled in high Mycn cells, as evidenced by the concurrent high adiposcore 
and p21 expression in S and G2/M, and the observed accumulation of 
lipid droplets alongside increasing nuclei counts (Figs. 2e and 6e and 
Extended Data Fig. 3f). However, this aberrant differentiation under 
high Mycn doses was accompanied by evident cell death (Fig. 6f). These 
findings collectively underscore the intricate interplay among TFs, TF 
dose, cell cycle dynamics and lineage differentiation.

Dose influences TF combination synergy or antagony
TFs do not operate in isolation and their effects depend on the relative 
dose61,62. Yet, how one TF’s dose influences the effects of another TF is 

poorly understood due to the complexity underlying combinatorial 
analysis. To explore this, we selected TFs with strong lineage-driving 
potential, including CEBPA, PPARG and MYCN for adipogenesis, MYOG 
for myogenesis and RUNX2 for osteogenesis, and performed combi-
natorial scTF-seq experiments (Fig. 7a; Methods).

Using single-cell readouts, we evaluated whether TF pairs induced 
distinct cell states compared to those induced by either TF alone 
(Methods). Typically, one TF dominated the transcriptomic outcome, 
forming a directed network of TF dominance (Fig. 7b,c). Yet, pairs 
such as CEBPA + MYCN, MYCN+MYOG and MYCN + RUNX2 produced 
unique states not explainable as simple combinations of individual 
TF effects, marked by distinct gene expression profiles (Fig. 7b and 
Extended Data Fig. 9a). For instance, CEBPA + MYCN uniquely upregu-
lated adipogenesis-related genes (Fabp4 and Gpd1l), suggesting a 
synergistic interaction (Extended Data Fig. 9a). Interestingly, adipo-
genic TFs paired with either adipogenic or lineage-diverting partners 
had synergistic or antagonistic effects, respectively, on adipogenic 
capacity (Extended Data Fig. 9b). These findings were substantiated 
by the respectively higher or lower lipid score for MYCN + CEBPA or 
MYOG + CEBPA compared to CEBPA cells (Extended Data Fig. 9c,d).

We then investigated how TF dose shapes combinatorial effects. 
For overall cell identity, we found that any TF with much greater doses 
than another was able to overcome the dominant effect, except for 
PPARG, possibly due to its low dose sensitivity (Fig. 7d, Extended Data 
Fig. 9e and Supplementary Table 4). Unique combinatorial states often 
required high doses (Fig. 7d). Additionally, TF dose sensitivity could 
shift in competitive contexts. For example, MYOG was highly dose sensi-
tive alone, whereas it was mostly dominated by other less dose-sensitive 
TFs at low doses (Fig. 7d, Extended Data Fig. 9e and Supplementary 
Table 4). MYCN, despite lower dose sensitivity than CEBPA, dominated 
over CEBPA when they were at similar doses (Fig. 7d, Extended Data 
Fig. 9e and Supplementary Table 4). TF combinations also exhibited 
dose-dependent effects on adipogenic capacity, with some interactions 
being non-monotonic (Fig. 7e). For instance, CEBPA + MYCN synergized 
globally, yet MYCN at intermediate levels antagonized adipogenesis in 
high Cebpa cells (Fig. 7e and Extended Data Fig. 9b). Conversely, the 
highest adipogenic capacity of the CEBPA + PPARG combination was 
observed at a low Pparg dose, a surprising finding given PPARG’s role as 

Fig. 5 | Reprogramming heterogeneity induced by TFs. a,b, Adiposcore (a; 
Methods) and expression level of adipogenesis-related genes (b) in CEBPA cells 
at different doses and batch-paired control cells (dose = 0). c,d, KLF4 and batch-
paired control cells colored by Klf4 dose (c, left), cluster (c, right), category (d, 
top) or batch (d, bottom). Fitted model = LOESS. e, Dose distribution of KLF4 
cells in each cluster shown in c (right). f, Heatmap displaying log-normalized 
expression (z score scaled by gene) of the top differentially expressed genes of 
KLF4 clusters (shown in c (right) and d (top)). Colored outlines indicate marker 
genes for respective clusters from e. g, Top ten unique biological process 
terms identified by GO enrichment analysis on the substantially differentially 
expressed genes of each KLF4 cluster (shown in c (right)). h, RNAscope images 
showing DAPI, WPRE (proxy for TF dose), Postn and Glul expression in control 
and KLF4 cells. Representative images of two independent experiments. Red 
and purple outlines indicate the cell boundary and expanded cell boundary, 
respectively. Scale bar = 100 µm. i, Scatterplot showing the expression of 

Glul (top) or Postn (bottom) in KLF4 cells (colored by the clusters shown in c 
(right)) and batch-paired control cells in function of Klf4 dose. j, Single-cell 
quantification of RNAscope (as shown in h) showing the log-normalized mean 
fluorescence intensity of WPRE (proxy for TF dose) versus Glul or Postn in KLF4 
and control cells. Fitted model = GAM. k, UMAP plots of MEIS2 and batch-
paired control cells colored by Meis2 dose (top) or cluster (bottom). l, Violin 
plot showing the dose distribution of MEIS2 cells in each cluster shown in k. m, 
Dose–response curves for the scores of five distinct gene expression modules 
regulated by MEIS2. Each module represents the substantially differentially 
expressed genes from the individual MEIS2 clusters in k. The same color scheme 
used for the clusters in k is applied to the corresponding modules here. Fitted 
model = GAM. See Supplementary Table 5 and Methods for statistics and exact 
P values (Extended Data Figs. 5–7). Ctr, clusters containing fewer than 60% TF 
cells; GAM, generalized additive model; norm., normalized; pos. reg., positive 
regulation.

Fig. 6 | Interactions between TFs, the cell cycle and differentiation 
(adipogenesis). a, UMAP plot of the TF atlas colored by adjusted cell cycle 
phase (Supplementary Note 7). b, Bar plot showing the fraction of cells in the 
adjusted phase for each TF. The total number of cells is indicated in brackets. 
A Fisher’s exact test was performed between confluent control cells (Ctr.conf) 
and each TF. In addition to Ctr.conf, only TFs and the non-confluent control 
cells (Ctr.non.conf) that tested significantly (FDR-adjusted P < 0.05) are 
visualized here. The top three TFs and controls are highlighted in red. c, Density 
plots showing the distributions of S and G2/M scores of TF cells (T, E2F2 or 
MYCN in red) compared to confluent control cells (Ctr.conf in teal). d, Bar plots 

showing the fraction of cells in each adjusted cell cycle phase across binned 
doses of T, E2f2 or Mycn. e, Heatmaps showing the transcriptomic adiposcore 
and the mean expression level of p21 in CEBPA, PPARG and MYCN cells, which 
are binned according to their adjusted cell cycle phase and TF dose. Bins with 
less than three cells were excluded (white square). f, Fluorescence images 
showing the viability of control, CEBPA and MYCN cells, indicated by PI staining 
in red (Supplementary Note 12). Nuclei were stained with Hoechst in blue. 
Representative images of two independent experiments. Scale bar = 200 μm. 
See Supplementary Table 5 and Methods for statistics and exact P values 
(Extended Data Fig. 8). PI, propidium iodide.
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a master regulator of adipogenesis (Fig. 7e)45. Finally, we observed that 
dose-dependent synergism can be gene-specific. CEBPA + MYCN syn-
ergistically activated adipocyte markers (Fabp4, Adipoq), while other 
adipogenesis-related genes (Pparg, Plin1) switched between synergy 
and antagonism depending on Cebpa dose (Fig. 7f and Extended Data 
Fig. 9f). These nonlinear and gene-specific interactions reflect the 
complexity of regulatory architectures, necessitating TF dose-resolved 
approaches for deeper insight.

Discussion
Numerous studies have highlighted the transformative impact of TF 
dose on molecular and cellular states9,13,15,63–66. However, the substantial 
cellular heterogeneity observed upon TF overexpression in ex vivo 
experiments contrasts with the precise control of cell fate alterations 
in vivo. This discrepancy highlights a gap in our understanding of 
how cellular programs intricately respond to variations in TF dose. 
To address this, we developed scTF-seq, a scalable approach that ena-
bles the following: (1) identifying lineage regulators and functional 
modules, rendering the resulting TF atlas a comprehensive reference 
for discovering TFs that induce specific phenotypes of interest (Fig. 2) 
and (2) leveraging a broad range of TF doses across thousands of cells 
(Fig. 1) to systematically, quantitatively and reproducibly map the 
influence of TF dose on cell reprogramming at the single-cell level. 
This unique capability distinguishes scTF-seq from other large-scale 
single-cell16,18–20,67 or bulk3,68,69 TF screening strategies (Figs. 3–7).

By exploring this intricate relationship between TF dose and func-
tion, we were able to stratify TFs into the following three distinct cat-
egories: low versus high-capacity TFs with the latter further subdivided 
into ‘low’ or ‘high’ dose-sensitive groups (Fig. 3). Although the biologi-
cal meaning of this TF classification is not yet fully clear, high-capacity 
TFs show greater loss-of-function intolerance and are enriched for 
phase-separation-related features (Fig. 4), pointing to a potential 
connection between TF capacity, regulatory impact and condensate 
formation48–54. A TF’s dose sensitivity may also be highly relevant to 
how TFs exert their function in response to stimuli or developmental 
signals. For example, most HOX and CDX TF family members feature 
a high-capacity and high dose sensitivity, aligned with their known 
influence in development through a concentration gradient70,71. In con-
trast, POU5F1 is a high-capacity, but low-dose-sensitive TF, consistent 
with observations that the highest reprogramming efficiencies were 
reached at the highest Pou5f1 overexpression levels65,72,73. Many TFs 
appeared to have low capacity, exemplified by vitamin D3 receptor 
VDR, which is likely ineffective without a sufficient supply of its ligand. 
We thus cannot rule out that certain TFs might have different classifica-
tions depending on factors such as the probed system, stimuli or even 
used approach. Furthermore, the definition of low-capacity TFs may 
also be influenced by the maximum dose achieved (Fig. 3).

Within high-capacity TFs, our findings illuminate the crucial role of 
TF dose in modulating cell states and driving reprogramming hetero-
geneity (Fig. 5). However, because our data are from a single snapshot, 
it remains difficult to infer the exact trajectory, that is, whether the 
observed TF-driven nonmonotonic expression patterns reflect true cell 
fate branching or, alternatively, progressive state transitions74. Future 
time-resolved studies will be essential to disentangle this complex 
relationship. Moreover, not all observed cell state transitions were 
strictly dose-dependent (Fig. 5). This may reflect the stochastic nature 
of gene transcription, arising from the dynamic interplay among tran-
scriptional processes (such as TF–DNA binding kinetics), epigenetic 
modifications and post-transcriptional events in individual cells75–79.

Alternatively, dose-independent cell state transitions may be 
influenced by more deterministic factors such as the cell cycle phase 
during initial TF overexpression12, although our observations indicate 
that the influence of the cell cycle can extend beyond the starting cell 
population (Fig. 6). Several TFs, including master regulators RUNX2 
and PAX9, exhibit a complex, non-monotonic interplay between the 

cell cycle and TF dose. This implies that such TFs can function as rheo-
stats, regulating dose-dependent entry into the cell cycle to control 
terminal differentiation, consistent with previous observations for the 
TF MITF80. We also revealed that MYCN challenges the conventional 
requirement for cell cycle exit in terminal differentiation, display-
ing a unique dynamic where cells actively cycled while concurrently 
expressing adipogenic genes (Fig. 6). Unraveling how MYCN regulates 
this intriguing state will necessitate more investigations, but it reflects 
MYCN’s pleiotropic role in controlling multiple cellular processes 
underlying organogenesis58.

Furthermore, our study underscores the non-monotonic, 
gene-specific dose dependency of TF interactions (Fig. 7), possibly indi-
cating diverse roles of implicated TFs in mediating various aspects of 
gene regulation, such as controlling chromatin accessibility, regulatory 
element interactions and gene activation15,81. The observed complexity 
in TF interactions points to the critical challenge of determining opti-
mal dose regimes for sets of TFs required to generate specific cell states.

In summary, our study not only sheds light on the pivotal role of 
TF dose in cellular reprogramming but also opens avenues for further 
exploration. scTF-seq’s agnostic nature to the cell system or species, 
coupled with its potential to uncover regulatory TF properties, posi-
tions it as a valuable tool for future research. However, certain limita-
tions of the current study should also be acknowledged such as the 
lack of temporal resolution, emphasizing the need for investigating 
reprogramming over time. In addition, future iterations of the analysis 
should consider incorporating additional modalities, such as chroma-
tin accessibility, to unravel molecular mechanisms underlying TF dose 
effects. This integrative approach would hold promise for deepening 
our understanding of TF-mediated changes in the chromatin landscape 
and their implications for cellular reprogramming.
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Methods
The experiments conducted in this study did not require approval from 
a specific ethics board.

Key resources table
Primer sequences, key resources (like cell lines, bacteria strains, rea-
gents, compounds and commercial assays) and their sources and iden-
tifiers, and software versions can be found in Supplementary Table 7.

Experimental model and subject details
HEK293T and C3H10T1/2 cells were used in this study. Detailed pro-
tocols for cell culture and differentiation, lentivirus production and 
transduction were described in Supplementary Notes 1–3.

Experimental details
Barcoding and cloning of TF ORF libraries. Barcoded dox-inducible 
lentiviral expression vectors carrying TF ORFs (pEXPRESS) were gen-
erated individually using the Gateway cloning system in two steps. In 
the first step, barcoded destination vectors were generated by intro-
ducing random nucleotides to the upstream region of the 3′ LTR of 
pSIN-TRE-GW-3xHA-puroR vector. Two fragments were amplified from 
the pSIN-TRE-GW-3xHA-puroR vector using Kapa HiFi ready mix with 
0.3 µM Enrich_F3 and 0.3 µM pTREP-BC-RamR, 0.3 µM pTREP-vec-R 
and 0.3 µM pTREP-BC-RamF, respectively. The PCR program was as 
follows: (1) 98 °C for 3 min, (2) 98 °C for 30 s, (3) 63 °C for 30 s, (4) 72 °C 
for 5 min, repeat steps 2–4 for 15 cycles and (5) 72 °C for 5 min. After 
purifying both PCR products using a 1% agarose gel and a gel purifica-
tion kit, the two fragments were assembled using a Gibson assembly 
mix according to the manufacturer’s instructions. Assembled plasmids 
(termed pTREP-ID vector hereafter) were then purified using a DNA 
Clean and Concentrator purification kit and transformed into one-shot 
ccdB survival 2 T1R resistant competent cells. Successful colonies 
were then inoculated to growth medium containing Ampicillin and 
Chloramphenicol for miniprep and validation. In the second step, TF 
ORFs were transferred from generated entry clones82 to pTREP-ID vec-
tors using LR Clonase II enzyme mix, producing pEXPRESS plasmids. 
Stbl3 one-shot competent cells were then transformed with pEXPRESS 
and grown on ampicillin (100 µg ml−1) plates overnight. Colonies were 
picked and transferred to Luria-Bertani with ampicillin for miniprep 
or midiprep. The barcodes (termed TF-IDs hereafter) and TF ORF on 
the pEXPRESS were examined by Sanger sequencing with the usage of 
microsynth standard primers: EGFP-C-Rev and TET-CMV-for.

Single TF overexpression screening, 10x scRNA-seq sequenc-
ing and TF-ID enrichment. Only TF-IDs with a hamming distance 
greater than 2 nucleotides were retained within each experiment for 
demultiplexing. In addition, C3H10T1/2 cells were transduced with the 
lentivirus particles carrying each barcoded TF ORF expression vector 
individually. Puromycin selection was performed to enrich successfully 
transduced cells. TF expression was induced by dox (2 µg ml−1) treat-
ment during 5 days in cells placed in a basic culture medium refreshed 
every 48 h. Then, cells were collected (Supplementary Note 1), pooled 
and loaded in the 10x Genomics Chromium Controller targeting 8,000–
10,000 cells per experiment. Because C3H10T1/2 cells might undergo 
spontaneous differentiation once reaching 100% confluency, mCherry 
was overexpressed under the same conditions in both non-confluent 
and confluent C3H10T1/2 cells as a control. Unless specified, all control 
cells were considered in subsequent analyses by default. To ensure 
reproducibility, negative controls (mCherry-overexpressing) and 
positive controls (cells induced for differentiation using an adipogenic 
cocktail or cells overexpressing TFs showing known reprogramming 
effects) were included in every experiment. At least six TFs were shared 
in each experiment with other experiments as biological replicates 
(Supplementary Table 1). All scRNA-seq experiments were performed 
using Chromium Single Cell Expression 3′ Reagent Kits after the 

manufacturer’s instructions. To specifically enrich the TF-ID, an addi-
tional PCR amplification targeting the 10x barcode, UMI and TF-ID were 
conducted using the full-length cDNA product of the 10x scRNA-seq 
library. The cDNA library (6 ng), BC_vec_target_10X_F1 vector-specific 
forward primer (0.3 µM), Truseq_universal_adaptor (0.3 µM) and Kapa 
HiFi ready mix (1×) were used after the program—(1) 98 °C for 30 s, (2) 
ten cycles of 98 °C for 10 s, 63 °C for 20 s and 72 °C for 30 s and (3) 72 °C 
for 5 min. The resulting amplicons were then purified using Ampure 
beads and further amplified to generate TF-ID-enriched libraries com-
patible with 10x cDNA libraries with Truseq_D7_adapter (0.3 µM), 
Truseq_universal_adapter (0.3 µM) and Kapa HiFi ready mix (1×) after 
the program—(1) 98 °C for 30 s, (2) four cycles of 98 °C for 10 s, 63 °C for 
20 s and 72 °C for 30 s and (3) 72 °C for 5 min. The TF-ID-enriched librar-
ies were then purified twice using 0.6× Ampure beads and pooled with 
the regular 10x sequencing libraries, which were sequenced together 
on the Illumina NextSeq 500/Hiseq 4000/NovaSeq 6000 platform 
using the dual-index configuration after manufacturer’s instructions 
to obtain a mean depth of 50,000 reads per cell.

Constructing adipogenic and myogenic reference cells. For in vitro 
adipogenic differentiation, mCherry-overexpressing cells were first 
cultured in the basic culture medium supplemented with 100 ng ml−1 
BMP4 for 3 days. Then the induction medium was added for 2 days, 
which was composed of the basic culture medium and MDI cocktail 
containing 1 µM dexamethasone, 0.5 mM 3-isobutyl-1-methylxanthine 
and 167 nM insulin. The cells were maintained in the basic culture 
medium supplemented with 167 nM insulin until collection. Myogenic 
reference cells were generated by transducing Myog (encoding a key 
myogenesis regulator40) and inducing its overexpression in C3H10T1/2 
cells for up to 5 days (Supplementary Note 3).

TF pair screening. To generate data with combinations of TFs, 
C3H10T1/2 cells were transduced with the first TF and selected with 
puromycin (Supplementary Note 3). Thereafter, the selected cells were 
transfected with a second TF (virus MOI around 3). The overexpression 
of both TFs was induced by dox following the conditions described in 
the above single TF overexpression screening section.

Multiplex RNA in situ hybridization. TF or mCherry-overexpressing 
cells were prepared through transduction, puromycin selection and 
2 µg ml−1 dox induction as described in Supplementary Note 3 and the 
above single TF overexpression screening section. TF-overexpressing 
cells, with wild-type C3H10T1/2 and mCherry-noDox controls (trans-
duced with mCherry but lacking dox treatment), were seeded onto 
individual wells of 96-well plates at ~10% density. Multiplex RNA in situ 
hybridization was performed on 96-well plates using RNAscope tech-
nology (Advanced Cell Diagnostics)83 per the manufacturer’s instruc-
tions. Briefly, cells were fixed with 10% neutral buffered formalin for 
30 min at reverse transcription, washed with PBS, dehydrated with 50%, 
75% and 100% ethanol for 1 min each, and stored at −20 °C. RNAscope 
was performed within the next 2 days. In situ probes against mouse 
Glul, Postn, Gng12, Aspn and lentiviral element WPRE were used in 
combination with the RNAscope Multiplex Fluorescent Reagent Kit 
v2 for target detection.

Validation of the adipogenic capacity of single TFs or TF pairs. 
C3H10T1/2 cells were transduced with the barcoded TF ORF expres-
sion vector with mCherry (control), individual adipogenic TFs or TF 
pairs, followed by Puromycin selection and 5 days of dox-induced TF 
overexpression (Supplementary Note 3 and the above single TF over-
expression screening and TF pair screening sections). Cells were then 
fixed with 4% PFA for 15 min at room temperature, permeabilized with 
PBS and Triton and stained with fluorescence dyes—Bodipy 10 µg ml−1 
for lipids and DAPI for nuclei. Cells were incubated with dyes in PBS for 
30 min in the dark, washed twice with PBS and imaged. Image stacks (10 
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per well, 96-well plate) were collected for each replicate using the blue 
and green channels with a ×20/0.8 objective. Adipocyte differentiation 
was quantified using an image preprocessing and analysis algorithm 
per the developer’s instruction84. The lipid score was defined as the 
ratio of Bodipy signals to DAPI signals.

Quantification and statistical analysis
10x scRNA-seq data preprocessing and quality control. Basecalls 
were performed using bcl2fastq. Sequencing reads were aligned and 
quantified using Cell Ranger against the GRCm38 (mm10, Ensembl 
release 96) mouse reference genome with default settings to generate 
count matrices of genes × cell barcodes. To match TF-IDs to cells, reads 
were also mapped to the pEXPRESS vector sequence, where each TF-ID 
nucleotide was replaced by ‘N’. TF-IDs from aligned reads at the location 
of ‘Ns’ were extracted with 1 nt mismatch allowed and matched to the 
corresponding cell barcodes and UMIs using an in-house framework, 
TFseqTools (https://github.com/DeplanckeLab/TFseqTools), yielding 
TF-IDs × cell barcodes read/UMI matrices.

All the data were loaded and processed on R. Doublet removal 
and TF-ID assignments were performed per experiment as described 
in Supplementary Note 5. Remaining cells from each experiment were 
analyzed using Seurat85. TF dose was computed as ln(1 + UMIs of the 
assigned TF-ID). Low-quality cells were filtered out using the isOutlier 
function of package scran86, using an nmads cutoff of 4–6 of the lower 
end tail depending on the gene expression matrix of individual experi-
ments. Cells with >10% or 15% of mitochondrial gene expression, >40% 
or 60% of ribosomal RNAs and <75% of protein-coding genes were 
also filtered out. TFs having <8 cells were excluded. Batch correction 
and data integration were performed as described in Supplementary 
Note 6. The clustree function from the clustree package was applied 
to find an optimal resolution for clustering87. The exact resolution of 
clustering was specified in downstream analyses. Cells and clusters 
were visualized using uniform manifold approximation and projection.

Dose comparison with public data. To functionally compare the dose 
reached by scTF-seq with that of alternative datasets, we obtained 
MORF data from GSE216595 (ref. 16). The data were preprocessed 
using the standard scanpy pipeline, and Fos-overexpressing and 
mCherry-overexpressing cells were subsetted as provided by the origi-
nal authors. Differential expression for both scTF-seq and MORF data 
was calculated using scanpy’s rank_gene_groups function with default 
parameters (method = t test, correction = Benjamini–Hochberg). Com-
mon differentially expressed genes were selected by selecting those 
orthologs that were differential (scanpy’s score of >5). To compare 
effect sizes at various doses, scTF-seq Fos-overexpressing cells were 
subsetted by removing cells with a dose higher than a certain cutoff.

RNAscope quantification. Images of 25 fields, each with five Z 
stacks, were collected for four fluorescence channels (blue, green, 
red and infrared) per well (96-well plate) using a ×20/0.8 objective. 
After flat-field correction, the best focus among the five Z stacks was 
selected for each field and channel. All fields with the best focus were 
further fused and represented as pyramidal images. Cell segmenta-
tion was conducted using the cytoplasm model (cyto3) of Cellpose3 
(ref. 88). The segmentation channel was generated by summing the 
green, red and infrared channels, while DAPI was used as the nuclear 
channel. A median cell diameter of 50 µm was specified, and a 10 µm 
nuclear expansion was applied to capture signals near cell boundaries. 
Mean fluorescence intensity was measured for each segmented cell 
and corrected for background by subtracting the median intensity of 
noncellular regions. Segmentations erroneously assigned to debris or 
dirt were excluded based on their detected features, such as the small 
cell size, abnormally low DAPI in the segmented cell region, or high 
intensity of DAPI in the expanded cytoplasmic region. Cell clumps 
were excluded based on a low ratio of expanded area to the total cell 

area. Additionally, 1% of outliers at the extreme lower or upper tails 
of the mean intensity distribution for each individual channel were 
filtered out. Spillover between spectrally adjacent channels was mod-
eled using linear regression on control (mCherry-noDox or wild-type 
C3H10T1/2) cells and corrected for TF and wild-type control cells when 
the estimated slope exceeded 0.01.

Differential expression and enrichment analyses. Differential 
expression analysis was performed on all detected genes using general-
ized linear models with batch as a covariate, as implemented in edgeR89. 
A false discovery rate (FDR) cutoff 5% was used to select substantially 
differentially expressed genes. ‘is.TFoe’ in Supplementary Table 3 indi-
cates whether the differentially expressed genes in TF-overexpressing 
or reference cells are the endogenous counterparts of overexpressed 
TFs. Marker genes of cell types of interest and hallmark gene sets were 
downloaded from MSigDB90 and PanglaoDB91. A clustering resolution of 
0.2 was used for enrichment analysis of clusters on hallmark gene sets. 
A customized gene set containing more mature adipocyte markers92 
(Supplementary Note 13) was used to compute the adipocyte module 
score (referred to as the adiposcore) by using the AddModuleScore 
function from Seurat. Gene set enrichment analysis was performed 
using the package fgsea93. Due to the relatively small number of gene 
sets (adipocytes, chondrocytes, myoblasts and osteoblasts) being 
analyzed, an FDR cutoff 5% was used. GO enrichment analysis was per-
formed using the enrichGO function from clusterProfiler94. GO terms 
with more than 50% genes overlapping were excluded.

Cellular similarity analysis. To assess cellular similarities and identify 
TFs that have similar biological functions (referred to as functional 
modules), pairwise Pearson correlation coefficients were computed 
using the rcorr function of the Hmisc package95, in a PCA space that 
was constructed from the first 50 PCs, and was inclusive of both control 
and functional TF cells in G1 (default phase).

Calculation of overall transcriptomic change. To quantify the overall 
transcriptomic change of the TF cells relative to the control cells, the 
heterogeneity among control cells was regressed out per batch by 
projecting cells to a PCA space derived from control cells, before inte-
grating all G1 (adjusted phase) cells of TFs and controls from all batches. 
Subsequently, a negative Pearson correlation between each cell and the 
centroid of control cells was computed in a unified high-dimensional 
space, derived from the top 200 PCs of the integrated data. The result-
ant values were then adjusted by subtracting the mean of the negative 
correlation between control cells and their centroid.

Comparison of endogenous and exogenous TF expression. The 
physiological (in vivo) expression range of TFs was extracted for all 
cell types in the CELLxGENE census database, covering over 150 anno-
tated single-cell datasets96. The physiological, exogenous (TF dose in 
the scTF-seq data) and endogenous (endogenous TF expression in 
the scTF-seq data) TF expression levels were normalized against 13 
housekeeping genes (Supplementary Note 14) covering a variety of 
central cellular processes or systems such as cytoskeleton, translation 
and ubiquitination. A minimal functional TF dose was defined for each 
TF as the exogenous dose required to reach a strong transcriptional 
effect (>0.23 overall transcriptomic change). The minimal functional 
dose of a TF was then compared to the range (5–95% quantile) of physi-
ological doses found in the cell type with the highest expression of the 
respective TF.

TF class and feature enrichment. TF classes were annotated according 
to AnimalTFDB97. Fisher’s exact test was applied to compare the num-
ber of zinc-finger or homeodomain TFs across high- and low-capacity 
TFs. TF features, including amino acid content, low complexity 
score and β turn fraction as listed in Supplementary Table 6, were 
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calculated by using the phase separation analysis and prediction clas-
sifier52. A two-sided Wilcoxon Rank Sum test followed by FDR correc-
tion was applied to compare the distribution of TF features between 
high-capacity TFs and low-capacity TFs. An adjusted P value of <0.05 
was considered statistically significant.

Low-capacity power analysis. To determine the power to correctly 
identify a TF as high capacity, we simulated lower maximal doses for all 
76 high-capacity TFs. In particular, for each TF, we removed cells above 
a certain dose threshold, reran the aforementioned logistic modeling 
and determined whether the TF was still (correctly) classified as being 
high capacity. By performing this analysis at different thresholds rang-
ing from the TF’s max dose to a dose of 2, we quantified the percentage 
of TFs falsely classified as low capacity at this threshold. This percent-
age was then used to calculate for each low-capacity TF its probability 
of being falsely classified as low capacity given its observed max dose 
(Supplementary Table 4).

Cell state transition analysis. To identify TF cells that underwent 
specialized cell state transitions, clustering analysis was performed on 
control and functional TF cells in G1 (adjusted phase) using a resolution 
of 1.2 with the FindCluster function from Seurat. Clusters that were 
predominantly composed of control cells were classified as control 
clusters. The remaining clusters were annotated as functional clusters. 
A TF with a certain proportion of its cells (5–95% cells for that TF) in at 
least two functionally distinct clusters was deemed to be a candidate 
steering cell state transition. TFs represented by fewer than 30 cells in 
total were excluded from analysis. To track cellular state divergence, for 
each remaining TF candidate, cells in G1 (adjusted phase) were pooled 
with their batch-paired control cells and reclustered. Control clusters 
were defined as those in which fewer than 60% cells originated from 
the focal TF. Monocle3 (refs. 98,99) was used to infer trajectory and 
pseudotime using the control clusters as roots.

Analyses for TF pair screening. Cells overexpressing a pair of TFs 
were detected as explained in Supplementary Note 15. The following 
analyses were performed separately for each TF pair. We subsetted 
cells that were assigned TF1 + TF2, TF1, TF2 or mCherry. Then we 
assigned each cell to one of the four following groups: TF1 + TF2 
(>4 UMIs for both TF1 and TF2), TF1 (>4 UMIs for only TF1), TF2 (>4 
UMIs for only TF2) or control (all other cells). To determine whether 
the TF pair cells grouped together into a state distinct from either 
the TF1 or the TF2 groups, we identified for each cell its five nearest 
neighbors in PCA space (first 20 dimensions). We then quantified for 
each cell within the TF1 + TF2 group the proportion of cells to which 
it was closest in the other groups, and averaged this over all cells. 
Cells were binned for both TFs into four uniform bins spanning the 
range from 0 to the maximum log1p UMI counts, with an additional 
bin for 0 UMI counts.

To detect genes that were uniquely expressed in TF pair cells, we 
performed differential expression using Seurat’s FindMarkers. Spe-
cifically, for each cell within the TF1 + TF2 group that had at least 50% 
TF1 + TF2 cells as nearest neighbor, we determined its closest matches 
to either the TF1 or the TF2 groups by performing the five-nearest 
neighbor analysis in PCA space (first 20 dimensions), and perform-
ing differential expression between the union of these cells with the 
TF1 + TF2 cells. Genes unique to the TF1 + TF2 group were defined as 
those with FDR-corrected P value of <0.05 and absolute fold change 
of >1.5.

Statistics and reproducibility. P values of <2.2 × 10−16 or <2 × 10−16 
are the default cutoff in R. Statistics, sample sizes, multiple testing 
corrections and exact P values are listed in Supplementary Table 5 
when applicable. For the t test, data distribution was assumed to be 
normal, but this was not formally tested. Unless specified, P values 

are visualized as NS = P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001 and 
****P < 0.0001. By default, the band represents the 95% confidence 
interval on the smoothed mean of the specified model. If not specified, 
boxes in standard boxplots indicate the first and third quartiles, the 
line indicates the median, and the whiskers indicate the first and third 
quartiles expanded by 1.5× the interquartile range.

The data collection was not randomized. Data collection and 
analysis were not performed in a blinded manner with respect to the 
experimental conditions. No statistical method was used to prede-
termine the sample size. No data were excluded from the analyses, as 
filtering steps were specified in the respective Methods.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All raw and processed scTF-seq data are available at ArrayExpress under 
accession E-MTAB-13010. Uncropped microscopy images reported 
in this paper are provided as Source data at figshare (https://doi.
org/10.6084/m9.figshare.29290625)100. Source data are provided 
with this paper.

Code availability
All source code is available at GitHub (https://github.com/
DeplanckeLab/TF-seq) and Zenodo (https://doi.org/10.5281/
zenodo.16892802)101.
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Extended Data Fig. 1 | Data quality control and dose validation, related to 
Fig. 1. a, Violin plots presenting the number of detected genes and counts, the 
percentage of mitochondrial and ribosomal gene expression of each cell across 
batches after quality control. b, Ordered cumulative frequency (cum. freq) of 
the number of cells assigned to each TF in each batch. The dashed line shows the 
cumulative ordered frequency of a uniform distribution as comparison. c, Left: 
representative fluorescence images showing the RNA transcripts of WPRE (proxy 

for TF dose) probed by RNAscope and mCherry (protein) in mCherry and control 
cells. Red and purple outlines indicate the cell boundary and expanded cell 
boundary, respectively. Representative images of two independent experiments. 
Scale bar = 100 μm. Right: single-cell quantification showing the correlation 
between the log-normalized mean fluorescence intensity of mCherry versus 
WPRE mRNA in mCherry and control cells. Fitted model: LOESS.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | A wide dose range generated by scTF-seq, related 
to Fig. 1. a, Volcano plots showing differential gene expression between 
control (mCherry) and FOS cells in our study (batch 9) and ref. 16. The q-value 
is the adjusted P value generated by the t test followed by FDR correction. 
b, Dose-response curves (top) and exemplary UMAP plots (bottom) for the 
expression of the top six shared up- and down-regulated genes in response 
to FOS overexpression in the scTF-seq dataset. These genes were selected 
by first filtering on significant (FDR <5%) differential expression in both the 

scTF-seq and Joung et al.16 datasets, and subsequently selecting the top six 
differentially expressed genes in ref. 16 dataset. c, UMAPs for the expressions of 
the orthologous genes from b on ref. 16 dataset. d, Standard boxplots (Methods) 
showing the distribution of fold changes when filtering the scTF-seq cells 
according to several maximal dose cutoffs (red) compared to the distribution of 
differential expression from ref. 16. e, UMAP plot of the TF atlas colored by cell 
cycle phase assigned with a default Seurat cutoff of 0 for cell cycle scores.
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Extended Data Fig. 3 | Identification of lineage-specific clusters, functional 
similarity of TF families, related to Fig. 2. a, UMAP plot of the functional TF atlas 
(see Fig. 2a, b) colored by batch. b, UMAP plot showing a subset of the functional 
TF atlas, including cells in the four major MSC clusters (adipogenic, myogenic, 
osteogenic and inflammatory) in Fig. 2b. Cells are colored by TF. Only TFs that 
have more than 25 cells were plotted. Adipo/Myo ref, adipocyte or myo reference 
cells. Ctr.conf, confluent control cells. c, Expression of marker genes linked to 
immune response (Isg15), myogenic (Mylpf), adipogenic (Fabp4), or osteogenic 
(Bglap2) lineages in each cluster in Fig. 2b. d, Gene set enrichment analysis 
(GSEA) result of a hallmark inflammatory response performed between cluster 

8 versus clusters 0, 1, and 6 combined (containing most of the control cells) in 
the functional TF atlas (see Fig. 2b). e, Heatmap showing a pairwise Pearson 
correlation of cells annotated by TF family, TF dose (in column) and batch (in 
row). Only TF families that have at least 30 cells were plotted. Cells are ordered 
by hierarchical clustering. f, Standard boxplot (Methods) showing nuclei counts 
quantified on images shown in Fig. 2e. Comparison was performed between the 
control and each TF. Data were collected from two independent experiments, 
with 1-2 independent wells for each. See Supplementary Table 5 and Methods for 
statistics and exact P values.
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Extended Data Fig. 4 | Categorizing TFs based on dose sensitivity and 
reprogramming capacity, related to Figs. 3 and 4. a,b, Violin plots showing 
overall transcriptomic change grouped by (a) control (mCherry) and TFs cells, 
or (b) functional (TRUE) and non-functional (FALSE) TF cells. p.val, P value. 
c, Comparison of the minimal functional dose required to reach a significant 
transcriptomic effect (circles) to the high endogenous dose observed in in vivo 
single-cell datasets (gray bands, Methods). The minimal functional dose (see 
d) is colored respectively in teal and red if it is above or below the physiological 
dose. The small vertical lines indicate the maximal dose observed in our study 
and are colored blue, except when the maximal dose falls below the highest dose 

observed endogenously, in which case they are colored orange. d, Boxplots 
showing the fraction of proline P, fraction of serine S, fraction of isoleucine I 
across high-capacity and low-capacity TFs. p.adj, adjusted P value. Crossbars and 
boxes represent mean ± s.d. e, Sensitivity to identify a TF as being high-capacity 
in function of the maximal dose reached by a TF. f, Overall transcriptomic change 
compared to maximal dose, with the probability for a TF as being identified as a 
false-negative, low-capacity TF highlighted in color. g, Predicted number of false-
negative, low-capacity TFs at various maximal dose bins. See Supplementary 
Table 5 and Methods for statistics and exact P values.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Discovery of candidate TFs associated with cell state 
transition, related to Fig. 5. a, Clustering tree of the Seurat-based clustering 
result of the phase-adjusted functional TF atlas (consisting of phase-adjusted 
G1 cells, Methods), visualizing the relationships between clustering at different 
resolutions. The resolution 1.2 was used for the functional atlas in b to generate 
an optimal number of clusters such that known lineage cells are separated.  
b, UMAP plots of the phase-adjusted functional TF atlas colored by the clustering 
result at resolution 1.2. c, Heatmap showing the proportion of TF cells in each 
cluster relative to the total number of TF cells. Ctr.conf, confluent control cells; 
Ctr.non.conf, non-confluent control cells. Only controls and TF candidates 

identified by cell state transition analysis (see Methods) were plotted. d, UMAP 
plots of the phase-adjusted functional TF atlas (shown in b) with KLF4, RUNX2, 
ETV1, EGR1, GRHL2, ESR2, MYOG and MEIS2 cells highlighted (red for TFs 
inducing the dose-dependent cell state transition, green for TFs exhibiting the 
stochastic state transition). e, UMAP plots of RUNX2 cells and their batch-paired 
control colored by groups classified according to Runx2 dose (top) or batch 
(bottom). f, Heatmap displaying log-normalized expression (z score scaled by 
gene) of differentially expressed genes of high and low Runx2 and control (Ctr) 
cells. Cells are ordered by Runx2 dose as indicated by the color bar on the left.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Examples showing dose-dependent cell state transition, 
related to Fig. 5. a,c,e,g, UMAP plots of ETV1 (a), EGR1 (c), GRHL2 (e), or ESR2 
(g) cells and their batch-paired control cells colored by category, batch, TF 
dose, or cluster. Ctr.non.conf, non-confluent control cells; Ctr.conf, confluent 
control cells. b,d,f,h, Violin plots showing the dose distribution of ETV1 (b), 
EGR1 (d), GRHL2 (f), or ESR2 (h) cells in the different clusters shown in a, c, e, 
g, respectively. p.adj, adjusted P value. i, Scatter plot showing the expression 
of Aspn (top) or Gng12 (bottom) in ESR2 cells (colored by the clusters shown in 
g, right) and batch-paired control cells in function of Esr2 dose. Fitted model: 

GAM. j, RNAscope images for DAPI, WPRE (proxy for TF dose), Gng12, and Aspn 
expression in ESR2 cells. Wildtype C3H10T1/2 cells were used as the control. All 
fluorescent channels were merged for cell segmentation, indicated by the red 
(cell boundary) and purple (expanded cell boundary) outlines. Representative 
images of two independent experiments. Scale bar = 100 μm. k, Single-cell 
quantification of RNAscope (as shown in j) showing the log-normalized mean 
intensity of WPRE (proxy for TF dose) versus Aspn (top) or Gng12 (bottom) in 
control and ESR2 cells. Fitted model: LOESS. See Supplementary Table 5 and 
Methods for statistics and exact P values.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | MYOG and MEIS2 showing dose-dependent and 
stochastic cell state transition, related to Fig. 5. a,b, UMAP plots of MYOG and 
batch-paired control cells colored by category or batch (a), cluster or dose (b). 
Ctr.non.conf, non-confluent control cells; Ctr.conf, confluent control cells.  
c, Violin plot showing the dose distribution of MYOG cells in the different clusters 
shown in b. p.adj, adjusted P value. d, UMAP plots of MEIS2 and batch-paired 
control cells colored by condition (top) or batch (bottom). Ctr.non.conf, 
non-confluent control cells; Ctr.conf, confluent control cells. e, UMAP plots of 
MEIS2 and batch-paired control cells colored by the module scores based on 
the top differentially expressed genes of each Control (Ctr) and MEIS2 cluster 
(Cluster 1 to 5) shown in Fig. 5k. f, Scatter plots showing the module scores in 
MEIS2 and batch-paired control cells along Meis2 dose. The module scores were 
based on the top differentially expressed genes of each Control (Ctr) or MEIS2 

cluster (cluster 1 to 5) shown in Fig. 5k. Fitted model: GAM. g, UMAP plots of 
MEIS2 cells from batch 4 (n = 108 cells) colored by Meis2 dose or unsupervised 
clustering results that were independently acquired on batch 4. h, Violin plot 
showing the dose distribution of MEIS2 cells in the different clusters shown 
in g. i, UMAP plots of MEIS2 cells from batch 4 colored by the module scores 
based on the top differentially expressed genes of each Control (Ctr) and MEIS2 
cluster (Cluster 1 to 5) shown in Fig. 5k. j, UMAP plots of MEIS2 cells from batch 9 
(n = 645 cells) colored by Meis2 dose or unsupervised clustering results that were 
independently acquired on batch 9. k, Violin plot showing the dose distribution 
of MEIS2 cells in the different clusters shown in j. l, UMAP plots of MEIS2 cells 
from batch 9 colored by the module scores based on the top differentially 
expressed genes of each Control (Ctr) and MEIS2 cluster (Cluster 1 to 5) shown in 
Fig. 5k. See Supplementary Table 5 and Methods for statistics and exact P values.
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Extended Data Fig. 8 | Cell cycle dynamics regulated by TFs and their doses, 
related to Fig. 6. a-d, 2D density contour plots of S and G2/M scores showing cell 
cycle dynamics of confluent (a, left) and non-confluent control (a, right), T (b), 
E2F2 (c), and MYCN (d) cells. See Supplementary Note 7. The colors of contour 
lines represent the probability associated with the computed highest density 

region. For example, 50% represents the region capturing 50% of the data points. 
P, adjusted P value. e, Bar plots showing the fraction of cells in each adjusted cell 
cycle phase across binned doses of Runx2 or Pax9. See Supplementary Table 5 
and Methods for statistics and exact P values.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Global and dose-dependent transcriptomic and 
phenotypic interactions between pairs of TFs, related to Fig. 7. a, Differential 
expression between cells with a pair of overexpressed TFs compared to those 
with a single TF overexpression. Shown are log2-fold changes between TF1 + TF2 
cells compared to a set of reference cells, defined as the union of all 5-nearest 
neighbors single TF cells for each TF1 + TF2 cell. Significant differential 
expression was defined using an FDR-adjusted p-value < 0.05 and absolute 
log2 fold-change >1.5. Highlighted in orange are those genes that were up- or 
down-regulated in both comparisons, and that constitute genes that are uniquely 
regulated in the combination cells. b, Transcriptomic adiposcore between 
control cells, single TF cells and TF1 + TF2 cells. c, Representative fluorescence 

images of lipid droplets (stained with Bodipy, yellow) and nuclei (stained with 
DAPI, blue) in single TF and TF1 + TF2 cells. Scale bar, 500 μm. d, Quantification of 
the lipid score as in (c). Data were collected from two independent experiments, 
with 1-2 independent wells for each. e, Scatter plot showing the overall 
transcriptomic change across TF dose colored for the individual TFs involved in 
combinatorial experiments. The lines represent the fitted logistic regression. 
f, Dose-response curves for the expressions of all transcriptomic adiposcore 
genes in control and CEBPA cells (black), compared to those for control and 
MYCN + CEBPA cells (orange). Fitted model: LOESS. See Supplementary Table 5 
and Methods for statistics and exact P values.
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All raw sequencing data generated in this paper has been deposited at ArrayExpress with the accession number E-MTAB-13010. Vector sequence for TF barcode 
counting has been deposited at github (vector_sequence, https://github.com/DeplanckeLab/TF-seq). The following genome assembly was used: GRCh38, release 96 
from Ensembl. Marker genes of cell types of interest and hallmark gene sets were downloaded from MSigDB v2023.1.Mm and PanglaoDB v2019. 
150 annotated single-cell datasets were downloaded from CELLXGENE census database. Mutational constraints quantified from variation in 141,456 humans were 
downloaded from gnomAD (v4.0). TF class annotations were collected from AnimalTFDB (v4.0). Microscopy data reported in this paper will be shared upon request. 
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Sample size Nine independent scTF-seq experiements were performed with some TFs involved in more than one experiment as replicates (as described in 
the manuscript and metadata). 45978 cells covering 384 individual TFs and 7 TF pairs were used for the construction of scTF-seq atlas. Sample 
sizes for this study were determined based on established empirical thresholds commonly used in single-cell omics to ensure robust detection 
of biological signals and statistical reliability. For differential expression (DE) analysis, we required a minimum of 5 functional cells per TF to 
retain sufficient power to detect expression changes while mitigating false positives from underpowered comparisons. For gene set 
enrichment analysis (GSEA), which requires greater statistical resolution to assess pathway-level effects, we imposed a stricter threshold of 
≥25 functional cells per TF. To evaluate TF dose sensitivity, reprogramming capacity, and cell fate transitioning—analyses that demand finer 
granularity to resolve dynamic or bifurcating behaviors—we restricted analysis to TFs with ≥30 cells. Cell cycle dynamics, which involve 
partitioning cells into discrete phases (G1/S/G2M), required ≥50 cells per TF to ensure adequate representation across phases for statistical 
testing. Statistic tests were performed for all the analyses as indicated in the Figure Legends and Methods accordingly.

Data exclusions Single-cell RNA-seq samples showing low quality were excluded. The criteria are described in the Methods and Supplementary table 1. Cell 
clumps, debris, and 1% of outliers at the extreme lower or upper tails of the mean intensity distribution for individual RNAscope image 
channels were filtered out. The criteria are described in the Methods.

Replication At least six transcription factors (as described in the metadata) were involved in more than one scTF-seq experiment. The imaging of mCherry 
expression was performed with three replicates. The profiling of mCherry fluorescence intensity was performed on two mCherry-
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overexpressing cell line, each with two replicates. RNAscope experiment was perfomed with at least two replicates. Validations of adipogenic 
capacity of single TFs or TF pairs were performed with at least three replicates. Cell death staining was performed with three replicates. These 
replicates successfully show consistent results.

Randomization In this study, randomization was not performed due to the controlled experimental design and systematic nature of the scTF-seq approach. 
Specifically: 
1. Only one isogenic cell line was used for the TF overexpression screen, minimizing genetic and environmental variability. 
2. Each TF or TF pair was tested in a targeted manner to directly assess its effect, with cells assigned to experimental groups based on the 
TF(s) expressed (not random assignment). This ensures unambiguous attribution of observed outcomes to specific TFs. 
3. Variability was addressed by performing nine independent scTF-seq experiments, with TFs tested across replicates. Batch effects were 
mitigated computationally (integration/batch correction) rather than via randomization. 
4. Statistical robustness was ensured by excluding TFs with low cell counts (e.g., <5 or < 25 functional cells for DE or GSEA analysis), which 
serves a similar purpose to randomization in reducing noise from undersampled groups. 
5. In single-cell perturbation screens, systematic testing of all factors under matched conditions (rather than randomized subsets) is standard 
practice to enable direct comparisons and atlas-scale profiling.

Blinding The imaging of mCherry expression, lipid accumulation or cell viability, and RNAscope was performed blindingly. Blinding is not necessary for 
other analyses as they are quantitative and no subjective interpretation is required.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Eukaryotic cell lines
Policy information about cell lines and Sex and Gender in Research

Cell line source(s) HEK293T and C3H10T1/2 cells used in this study were obtained from ATCC.

Authentication None of the cell lines used were authenticated

Mycoplasma contamination All cell lines used in this study were tested negative for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

No cell lines is misidentified to our knowledge

Novel plant genotypes This information was not collected as only cell lines and no human or animal subjects were used.

Seed stocks This information was not collected as only cell lines and no human or animal subjects were used.

Authentication This information was not collected as only cell lines and no human or animal subjects were used.

Plants
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Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation C3H10T1/2 cells (Wildtype and mCherry overexpressing) were harvested by trypsinization, followed by quenching with 
growth medium. Cells were washed with PBS and resuspended in ice-cold PBS with DAPI (1 μg/mL) on ice.

Instrument BD LSR Fortessa 5-laser cell analyzer

Software Collection: BD FACSDiva 8.0.1 
Analysis: FlowJo v10.10 and R v4.1.0

Cell population abundance Between 75-90 % events passed the FSC/SSC gating used for analyzing single cells, of which at least 95 % were alive based on 
negative DAPI signal. Cells were not sorted further, just analyzed for mCherry fluorescence intensity.

Gating strategy Cells were gated based on FSC and SSC to select single cells. Live cells were gated based on negative DAPI signal (355nm - 
450/50nm). Live cells were analyzed for mCherry signal (561nm - 610/20nm).

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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