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Painting Peptides With Antimicrobial Potency Through
Deep Reinforcement Learning

Ruihan Dong, Qiushi Cao, and Chen Song*

In the post-antibiotic era, antimicrobial peptides (AMPs) are considered ideal
drug candidates because of their lower likelihood of inducing resistance.
Computational models provide an efficient way to design novel AMPs.
However, current optimization and generation approaches are tailored for
specific application scenarios, which hinders the ease of use. To address this
challenge, a novel AMP design model named AMPainter is proposed. Based
on deep reinforcement learning, AMPainter integrates optimization and
generation tasks in a unified framework. AMPainter is applied to three types
of peptides, including known AMPs, signal peptides (SPs), and random
sequences. AMPainter outperforms ten related models in enhancing the
activity of known AMPs on the predicted antimicrobial potency and diversity.
Several AMPs demonstrate a 128-fold decrease in their actual minimal
inhibitory concentrations (MICs). AMPainter evolves effective AMPs from
membrane-active SPs with an experimental success rate of 80%. In terms of
generation, de novo designed AMP from an inactive random sequence
achieves an average MIC of 2.88 µM against four bacteria. In vitro MICs of
peptides along the virtual evolutionary path match the predicted scores.
Therefore, AMPainter can significantly improve the antimicrobial potency of
various peptides, expand the AMP sequence space, and discover novel
antimicrobial agents.
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1. Introduction

Microbe-caused diseases have been threat-
ening human health and the problem is
becoming more serious in recent years.
According to the World Health Organiza-
tion, drug-resistant infections result in over
700,000 deaths annually and this number
may reach ten million in 2050.[1] There
is an urgent need to develop new antimi-
crobial drugs, and one of the most attrac-
tive candidates is the antimicrobial peptide
(AMP). These peptides are well known for
their membrane-disrupting mechanisms
and broad-spectrum antimicrobial prop-
erties, making them less likely to in-
duce resistance compared to conventional
antibiotics.[2,3] Although there are more
than 30,000 AMPs documented in ex-
isting databases,[4] they remain sparsely
distributed throughout the vast sequence
space and warrant further exploration.
Computational models provide an ef-

ficient way to discover new AMPs and
enhance their properties. Machine learn-
ing classifiers facilitate the screening
of AMPs from natural sources, such as

human proteomes[5] and microbial genomes,[6] as well as from
the entire space of hexapeptides[7] and octapeptides.[8] However,
many of these AMPs require further design optimizations to en-
hance their antimicrobial activity. Generally, AMP design works
can be categorized into two types, optimization and generation.[9]

Optimization strives to improve the antimicrobial potency of a
known AMP by perturbing its sequence, whereas generation
does not depend on inputting available sequences and creates
AMPs from scratch. Common optimization approaches include
rational design[10,11] and evolutionary methods,[12,13] heavily rely-
ing on expert knowledge and exploring sequences within a lim-
ited space.[14] Data-driven generative models are facilitated by
deep learning techniques such as the variational autoencoder
(VAE)[15–17], generative adversarial network (GAN)[18,19], diffusion
model[20] and so on. These models can efficiently generate hun-
dreds of new potential AMPs within seconds. Nevertheless, ex-
ternal filtering criteria are adopted to select the most promis-
ing sequences, only some of which will undergo experimen-
tal validation[21,22]. Particularly, some generative models can per-
form optimization tasks in an ’analog generation mode’ to im-
prove the antimicrobial potency of input sequences[9]. For in-
stance, HydrAMP and deepAMP generate analogues of specific
AMPs based on the VAE architecture. However, they cannot
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Figure 1. The framework of AMPainter. Given a set of peptide sequences as inputs, AMPainter can evolve them into new AMPs through an iterative
three-step process: assigning the mutation site with a policy network (a), replacing the residue with a fine-tuned language model (b), and evaluating the
antimicrobial activity with a predictor named HyperAMP (c). HyperAMP was a hypergraph neural network model, which was trained with known AMPs
and their corresponding antimicrobial activity labels before being incorporated into AMPainter. The predicted antimicrobial scores were used as rewards
to update the policy network via reinforcement learning. Each peptide undergoes eight iterations.

perform unconstrained and analog generation under the same
training settings, even requires case-specific fine-tuning.[23,24]

Classic cases of directed evolution inspired us to achieve the
above two design tasks in a unified strategy.[25] By applying appro-
priate evolutionary pressure as guidance, proteins can be pushed
to enhance their original functions or acquire new capacities
through point mutation.[26] Hence, a possible solution for inte-
grating the optimization and generation of AMPs is to develop
a design strategy based on virtual directed evolution, for which
reinforcement learning can be an effective way, especially for the
identification of the mutation sites. Notably, a few studies have
used reinforcement learning in the field of protein engineering
to explore a wide search space (20L, where L is the length of the in-
put sequence).[27,28] However, its application in de novo sequence
design remains limited, as the starting position in the fitness
landscape is often far from the ideal destination, necessitating
an exhaustive search.
In this study, we propose an AMP design model named AM-

Painter. We split the mutation process into two steps, select-
ing the mutation site and assigning the type of mutant residue.
AMPainter improves the antimicrobial potency of different se-
quences in an efficient manner with the aid of reinforcement
learning and a protein language model, even the initial sequence
is totally inactive. We utilized AMPainter to tackle three AMP
design tasks, including enhancing the activity of known AMPs,
evolving new AMPs from signal peptides (SPs), and generating
de novo AMPs from random sequences. In the optimization task,
AMPainter outperformed ten related models on a set of known
AMPs. Several peptides demonstrated a 128-fold increase in their
antimicrobial activities in vitro after evolution. Experimental tests
of the top ten sequences evolved from membrane-active SPs ex-
hibited a success rate of 80%. In terms of generation, six out
of ten tested peptide candidates are AMPs, and a de novo de-
signed AMP R04 had an average minimal inhibitory concentra-
tion (MIC) value of less than 3 µM against four bacteria. Mean-
while, AMPainter can provide the evolutionary paths of evolved

AMPs, benefiting in-depth investigations in sequence-activity re-
lationships.

2. Results

2.1. Overview of AMPainter

Ourmodel was namedAMPainter for ’painting’ antimicrobial po-
tency to any given peptide sequences. As illustrated in Figure 1,
AMPainter comprised three modules. First, we implemented
a policy network to assign the mutation sites of the input se-
quences. This two-layer neural network transformed amino acid
letters into probabilities, from which we sampled to designate a
mutation site and substituted it with a masking character. Sub-
sequently, we fine-tuned a protein language model Ankh[29] with
AMP sequences and utilized it to decode the masked residues.
Finally, we trained a novel and independent antimicrobial activ-
ity predictor HyperAMP to evaluate the mutated sequences. This
evaluation score was then used as the reward for updating the
policy network.
We developed the regression model HyperAMP using multi-

level hypergraph neural networks (HGNN, framework in
Figure S1, Supporting Information). In a peptide hypergraph, we
treat residues as nodes. Unlike graph, a hyperedge in a hyper-
graph can connect more than two nodes, which is advantageous
for capturing higher-order connections within the hypergraph.
Therefore, we truncated sliding fragments of peptides and en-
coded them as hyperedges since the composition of fragments
is related to peptide activity.[16] We split 2-, 3-, and 4-gram frag-
ments and used a HGNN for each, and subsequently concate-
nated the multi-level peptide embeddings for regression. This
approach yielded superior results compared to using either sin-
gle or double fragment embeddings (Table S1, Supporting Infor-
mation). We extracted the residual embeddings from the Ankh
model as node features because it demonstrated better perfor-
mance than other protein language models (Table S2, Support-
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ing Information). During the training of HyperAMP, we trans-
formed the MIC labels of AMPs into reward scores (Figure S3a,
Supporting Information). HyperAMP achieved a Pearson corre-
lation coefficient of 0.9220 ± 0.0009 and an RMSE of 0.1631 ±
0.0001 on the test set, surpassing the performance of other base-
line models (Figure S2, Supporting Information), ensuring its
accurate guidance in AMPainter.
We trained AMPainter for 40 episodes, with 966 random se-

quences whose lengths are in the range between 10 and 40 amino
acids. The average reward score improved significantly during
the training process, increasing from about 0.26 to 0.78. We fur-
ther used ablation study to validate the role of bridging fine-
tuned language model (Figure S3b, Supporting Information).
AMPainter processed eight iterations for each input sequence,
which means mutating eight steps in total and conducting one
mutation for each step. We set this iteration number to achieve a
balance between the antimicrobial score and diversity, as a higher
number would increase the antimicrobial score but reduce the di-
versity (Figure S4, Supporting Information).

2.2. AMPainter Outperforms Other Methods on AMP
Optimization

After finishing training AMPainter, we compared its perfor-
mance with ten related methods on the task of enhancing the
activity of known AMPs. The input data was 200 AMPs from
the test set of the HyperAMP predictor, ensuring that these se-
quences had not been encountered by the AMPainter model in
any training stage. For theHydrAMPmethod, we selected its ana-
log generation mode.[23] For other evolutionary approaches, we
utilized HyperAMP as a surrogate model to guide the optimiza-
tion process for fair comparisons. To maintain consistency with
AMPainter, we set the maximum number of mutations per se-
quence as eight for all methods. The top 200 sequences sorted by
HyperAMP were retained for each method.
We used three evaluation metrics to analyze the results. First,

we re-scored the antimicrobial activity of the top 200 evolved
sequences by the MBC-Attention model[30] and AMP-READ.[31]

Since our HyperAMP had been used in optimization, we se-
lected alternative scoring models for this analysis. The results
showed that all 11 methods could improve the initial AMPs, and
AMPainter achieved the best performance in terms of both the
highest value and overall distribution (Figure 2a; Figure S5a,
Supporting Information). Second, we adopted six widely used
AMP classifiers (AMPScannerV2,[32] CAMPR4-RF, CAMPR4-
SVM, CAMPR4-ANN,[33] MACREL,[34] and ampir[35]) to evalu-
ate these evolved sequences. We calculated the average predicted
probabilities for each sequence and plotted their distribution
in Figure 2b and Figure S5b (Supporting Information), instead
of the binary labels. AMPainter outperformed other methods
with overall higher probability values. Most sequences from AM-
Painter exhibited an average antimicrobial probability greater
than 0.9.
In addition to antimicrobial evaluations, we also compared the

sequence diversity (Equation (13)) of the top 50, 100, and 200 se-
quences evolved by each method in Figure 2c. AMPainter ranked
first for both the top 50 and the top 100 sequences, and it secured
third place for the top 200. Therefore, AMPainter can obtain a va-

riety of optimized sequences across a range of inputs rather than
being trapped in the local optima of certain sequences.
Inspired by deepAMP,[24] we also investigated the ability of

AMPainter to optimize amphipathic helical peptides using a fit-
ness score as reward. Starting with four fragments of Pg-AMP1
peptide, AMPainter contributed to the highest fitness score of
0.624 after five rounds of evolution, outperforming random opti-
mization, genetic algorithm (GA, reported top 100 sequences[13]),
and three VAE models[36] (Figure 2d; Figure S6a, Supporting In-
formation). Figure 2e showed that the top 100 sequences evolved
by AMPainter surpassed those of deepAMP from rounds 2 to
5. The evolution of AMPainter converged at significantly amphi-
pathic sequences full of alternating leucine (L) and arginine (R)
residues following the fitness score (Figure S6b–d, Supporting
Information). These results demonstrate that AMPainter excels
in optimizing AMPs.

2.3. AMPainter Enables to Evolve Diverse Sequences Into AMPs

We applied AMPainter to evolve three different sets of initial
sequences, known AMPs, signal peptides (SPs), and random
sequences (Figure 3a). Enhancing the activity of known AMPs
was an optimization task, for which we compared AMPainter
with other approaches in the previous section. The second task
was to evolve AMPs from bacterial signal peptides since their
membrane-active characteristic may be related to themembrane-
disrupting mechanisms of AMPs. The third task focused on de-
signing AMPs from random sequences, which could be consid-
ered as de novo generation. We used 200 known AMPs, 708 SPs,
and 200 random sequences as input to AMPainter, respectively
(for details, see the Experimental Section).
After eight iterations of evolution, we selected the best-evolved

sequence of each initial sequence and investigated their antimi-
crobial scores. Figure 3b displayed the overall score distributions
of both the initial and the best-evolved sequences in gray and
blue, respectively. The scores of the initial known AMPs were
relatively higher than those of the other two sets, while some sig-
nal peptides also exhibited high scores. Almost all random se-
quences were scored around zero, indicating that there was no
antimicrobial potency. The scores of best-evolved sets increased
significantly compared to the initial sets. Meanwhile, we calcu-
lated the increasing amount (Δ score) of each peptide (Figure 3c).
All the sequences had improvement with a Δ score > 0, which
verified the ability of AMPainter. Since the initial known AMPs
already had high scores, their Δ scores were relatively lower than
the other two sets. About 60% of the sequences evolved from
SPs obtained Δ scores that exceeded 0.5, as did the random se-
quences. We also divided the increasing scores into each iter-
ation. In Figure 3d, the average scores of sequences in three
sets grew consistently over eight iterations. For each sequence,
the Δ score varied at each iteration, but the majority showed
an increase, with random sequences improving at a faster rate
(Figure S7a, Supporting Information).
Figure 3e illustrated the amino acid frequency distribution

of initial random sequences, best-evolved sequences after AM-
Painter’s evolution, and real AMPs. The initial sequences were
generated randomly and thus exhibited a uniform distribution
excluding cysteine (C), that is, the 19 amino acids appeared es-
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Figure 2. Results of AMPainter in comparison with other related methods on enhancing the activity of known AMPs. a) Antimicrobial evaluation of the
top 200 sequences optimized by variousmethods, scored by theMBC-Attentionmodel. One-sidedMann-Whitney test was used for statistical analysis. *p
< 0.05. ***p < 0.001. b) Distribution of the average antimicrobial probability of the top 200 sequences, as predicted by six AMP classifiers. c) Sequence
diversity of the top 50, 100, and 200 evolved sequences. d) Optimization of four Pg-AMP1 fragments guided by the fitness score. e) Comparison of
AMPainter and deepAMP models on five rounds of Pg-AMP1 optimization task, with the fitness score as the reward.

sentially at the same frequency (dashed line in Figure 3e). After
our virtual evolution, the amino acid distribution of best-evolved
sequences was similar to that of real AMPs, which showed a pref-
erence for positively charged lysine (K) and arginine (R). Neg-
atively charged aspartic acid (D) and glutamic acid (E) were al-
most entirely replaced. Some hydrophobic amino acids, such as
leucine (L) and isoleucine (I), were more prevalent in these two
sets as well. Likewise, evolved sequences from known AMPs or
SPs featured similar distributions (Figure S7b, Supporting In-
formation). These results demonstrated that AMPainter could

evolve different types of peptides to reach high antimicrobial po-
tency, regardless of their initial amino acid probability distribu-
tion.

2.4. Evolved AMPs Obtain Enhanced Activities in Vitro

To verify the antimicrobial activity of evolved AMPs, we mea-
sured their minimum inhibitory concentration (MIC) values in
vitro. We selected 30 AMP candidates for chemical synthesis
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Figure 3. Applications of AMPainter. a) Three initial sets for AMPainter are known AMPs, bacterial signal peptides (SP), and random sequences. b)
Overall evolutionary results of three sets by AMPainter. The score distributions of initial sequences are shown in grey, while the best-evolved ones are
in blue. c) Distribution of the increasing scores of each initial sequence in three sets. d) Average scores of sequences at each evolutionary iteration. e)
The amino acid frequency of initial random sequences, their best-evolved sequences, and real AMPs.

and MIC measurement, involving the top ten peptides from the
three evolved AMP sets discussed above. We didn’t include any
additional metrics to filter the sequences for entering the ex-
perimental validation stage. According to their initial sequences
and antimicrobial scores, we named them A01 to A10 (from
known AMPs), S01 to S10 (from signal peptides), and R01 to
R10 (from random sequences). All the peptides were positively
charged and some had a high hydrophobic ratio (Table S3, Sup-
porting Information). Meanwhile, we checked the similarity of
these candidates using BLAST against the largest AMP database,
DRAMP.[4] Except for the peptides that evolved from known
AMPs, most of them had E-values greater than one or could
not find any matching sequences (labeled ’/’ in Table S4, Sup-
porting Information), highlighting the novelty of the selected
peptides.

We chose four standard bacteria for the MIC test, includ-
ing two Gram-positive strains (B.subtilis ATCC6633 and S.aureus
ATCC6538) and two Gram-negative strains (E.coli ATCC25922
and P.aeruginosa ATCC9027). Figure 4 displayed all the test re-
sults. We considered a peptide as an AMP if it exhibited an MIC
of less than or equal to 128 µM against at least one bacterial
strain.[37,38] All peptides evolved from known AMPs met this cri-
terion and retained their antimicrobial potency (Figure 4a). As for
peptides evolved from SPs (Figure 4b), eight out of ten were iden-
tified as AMPs, except for S09 and S10, indicating a success rate
of 80%. For peptides evolved from random sequences, the suc-
cess rate was 60%, with R01-R05 and R09 demonstrating antimi-
crobial activity (Figure 4c). Among them, R04 had an outstanding
performance with an average MIC of less than 3 µM, which was
superior tomost of de novo generatedAMPs.[17,22] The lowestMIC

Adv. Sci. 2025, e06332 e06332 (5 of 13) © 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH
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Figure 4. Minimal inhibitory concentrations (MICs) of evolved peptides against four bacterial strains. a) Top ten sequences (A01-A10) evolved from
known AMPs. The area of scatter shows the MIC fold changes of evolved sequences compared to their corresponding initial sequences. b) Top ten
sequences (S01-S10) evolved from bacterial signal peptides. c) Top ten sequences (R01-R10) evolved from random sequences. Bs, B.subtilis ATCC6633.
Sa, S.aureus ATCC6538. Pa, P.aeruginosa ATCC9027. Ec, E.coli ATCC25922.

value of R04 reached 0.5 µM against S.aureus. Overall, the AMPs
achieved lower MICs against Gram-positive strains compared to
Gram-negative strains. This could be attributed to the structural
variations in their membranes, as Gram-positive bacteria lack the
outer membrane.
For A01-A10, we also tested the MICs of their corresponding

initial AMPs (results in Table S5, Supporting Information) and
calculated the fold changes after being optimized by AMPainter
(Figure 4a). Here we measured the MICs of initial AMPs under
the same conditionswith A01-A10 to ensure the valueswere com-
parable. The MICs of eight peptides reduced against at least one
bacteria, and nine MICs of five peptides decreased more than 16
times. For example, A05 peptide obtained an MIC of 0.25 µM
against B.subtilis, and this value of its original AMP Ascaphin-5
was 16 µM, indicating that the antimicrobial potency of A05 in-
creased by 64 times after the optimization. A05 also performed
exceptionally well on the other three strains, with MICs of 1, 4,
and 0.5 µM, corresponding to fold changes of 32, 32, and 4. We
also checked the predicted scores of the initial sequences of S01-
S10 and R01-R10 by HyperAMP, and all scores were below 0.1,
showing no potential for these peptides to be AMPs. Therefore,
AMPainter accomplished the tasks of evolving new AMPs from
a diverse range of sequences, enabling both optimization and de
novo generation of highly active AMPs.

2.5. Evolved AMPs Preferentially Target Bacterial Membranes

Hemolysis and cytotoxicity are important factors to check in AMP
design, as they can influence the potential of AMPs as drug can-
didates. Due to the membrane-disrupting mechanism of most
AMPs, they can often damage the plasma membrane of human

cells. We investigated the concentration that causes 25% hemoly-
sis of rat erythrocytes (HC25) and the concentration that reduces
the viability of human embryonic kidney 293T (HEK293T) cells
by 50% (CC50) of the 24 AMPs evolved by AMPainter (Figure 5a,
details in Table S6, Supporting Information). We found that sev-
eral evolved AMPs from known AMPs showed hemolytic and cy-
totoxic tendencies. Notably, these attributes were also observed in
some initial AMPs as previously reported (Table S5, Supporting
Information). Meanwhile, we harvested some AMPs with ideal
hemolysis and cytotoxicity, particularly those evolved from signal
peptides. All HC25 values of S01-S08 exceeded 128 µM, indicat-
ing that bacterial signal peptides may preferentially interact with
bacterial membrane rather than human membrane.
We also calculated the selectivity index (SI) of the 24 AMPs by

dividing the meanMIC by HC25 or CC50 (Table S6). An AMP was
likely to function as an antimicrobial agent with reduced side ef-
fects when its SI exceeded one. Hence, some of our AMPs had
the ability to distinguish different membranes such as A03 (SI
> 23.27), S07 (SI > 11.91), and R04 (SI > 44.44). To further ver-
ify their membrane-targeting preferences, we performed molec-
ular dynamics (MD) simulations on six peptides with relatively
high SI and CC50. We built two systems with distinguished com-
positions of lipid bilayers[17] for each peptide, mimicking the in-
nermembrane of E.coli and human plasmamembrane (Table S7,
Supporting Information), respectively. The peptides were placed
2 nm above and parallel to themembranes at the beginning of the
simulations, and showed different interactions with the mem-
brane surface after 500 ns of simulation, as shown in Figure 5b.
The significant difference was that these peptides were com-
pletely adsorbed to E.coli membrane, while they only contacted
human membranes with one terminus or even no contact at
all (S01 and S07). We counted the ratio of heavy atoms in pep-
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Figure 5. Hemolysis, cytotoxicity andmembrane preferences of evolved peptides. a) Hemolysis (HC25) on rat blood and cytotoxicity (CC50) on HEK293T
cells of AMPs evolved by AMPainter. b) Representative snapshots of MD simulations, which is R04 peptide with E.coli inner membrane or human plasma
membrane models. c) Interaction ratios of AMP heavy atoms with membrane heavy atoms (with a cutoff of 3.5 Å).

tides interacting with membranes (cutoff 3.5 Å) in the last 100 ns
(Figure 5c). These six peptides exhibited a higher interaction ratio
with the E.coli membrane than the human membrane, particu-
larly for S01 and S07. The interaction ratio calculated by frame
counting showed similar results (Figure S8). This preference ap-
pears to be caused by electrostatic interactions, as bacterial mem-
branes had more negative charges than human membranes and
tended to interact with positively charged AMPs. Previous stud-
ies also observed a similar phenomenon.[17] The specific mecha-
nisms warranted further exploration through larger-scale simu-
lation and wet-lab experiments.

2.6. Evolutionary Paths of a De Novo Generated AMP

To investigate how AMPainter evolved the peptides, we analyzed
the improvement in antimicrobial potency over the eight steps of
evolution. Specifically, we focused on the task of evolving AMPs
from random sequences and regarded it as de novo generation.
After validating de novo designed AMPs in vitro as above, we
found that R04 presented attractive antimicrobial activity and se-
lectivity. The 26-residue R04 is an amphipathic 𝛼-helix peptide,
representing a successful case of generation with typical AMP
characteristics (Figure 6a, b).
We conducted a deeper investigation of R04 by collecting its

evolutionary paths from AMPainter. Figure 6c displayed five par-
allel paths starting from the same sequence 2-0. AMPainter pro-
duced 20 paths for 2-0 in total and the top five, whose ending se-
quences had higher activity, were presented here. In other words,
all the peptides shown in Figure 6c were homologous sequences
of R04. As the number of mutations increased, the activity score
elevated along all five paths, and rose rapidly during the first four

iterations. In terms ofmutation types, K and R appearedmultiple
times to increase positive charges, which was consistent with the
common characteristics of AMPs.When aligning different paths,
we found some conserved mutation sites. For example, the neg-
atively charged E12 of 2-0 was mutated in all paths at the first
iteration. Replacement of M5, A8, and A25 also occurred multi-
ple times, although their mutation orders were not the same.
Furthermore, we concentrated on the evolutionary path of R04

from 2-0 (Figure 6d). According to their predicted antimicrobial
score, 2-0 was a non-AMP, and transformed to 2-1 and 2-2 by re-
placing two negatively charged residues with positively charged
residues. Then AMPainter mutated T4F of 2-2 and M5K of 2-
4 with scores increasing slightly. There were consecutive muta-
tions of A8 during the last three iterations, including stepwise
mutations to M, E, and R. This indicated that AMPainter did
not always add positive charges to generate AMPs, and some-
times took detours, as the score slightly decreased at 2-7. We
also experimentally tested the MICs of all eight sequences along
this path. Impressively, the mean MICs against four bacteria
were consistent with the predicted scores, exhibiting a decreas-
ing trend (higher antimicrobial activity) from 2-0 to R04, except
for 2-7. MICs of 2-7 against three strains were doubled or quadru-
pled compared to 2-6, presenting a negative effect of M8E. After
the E8R mutation, R04 obtained the best MICs against all four
strains. The in silico evolutionary paths from AMPainter assisted
in exploring the sequence-activity relationships of AMPs, elimi-
nating the need for time-consuming mutational scanning.
We also conducted a 30-day resistance test of R04 in compari-

son with the antibiotic ciprofloxacin (CIP) on E.coli ATCC25922
(Figure 6e). CIP began to induce resistance on the eighth day of
passage, whereas the continuous use of R04 did not cause re-
sistance. In a word, R04 is a de novo designed AMP with supe-
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Figure 6. Characterizations of a de novo designed AMP R04 from AMPainter. a) Structure of R04 predicted by AlphaFold 2. b) Helical wheel of R04.
Blue and black stand for polar and nonpolar residues, respectively. c) Five parallel in silico evolutionary paths of R04 from AMPainter. Peptide names
are labeled as path-iteration, and are in black with HyperAMP score of less than 0.6 for clarity. d) The predicted HyperAMP scores of sequences in the
R04 path match experimentally measured mean MIC values. Ec, E.coli ATCC25922. Pa, P.aeruginosa ATCC9027. Sa, S.aureus ATCC6538. Bs, B.subtilis
ATCC6633. e) The resistance test of R04 in 30 days. CIP, ciprofloxacin.

rior properties and has great potential to serve as an antimicro-
bial agent.

3. Discussion

In the post-antibiotic era, severe drug-resistant infections neces-
sitate the development of novel therapeutic compounds, with
AMPs serving as promising candidates. Compared to the time-
consuming identification of AMPs from natural resources in
vitro, artificial intelligence significantly accelerates their dis-
covery. For example, hundreds of AMPs have been discovered
by mining metaproteomes.[6,38] Meanwhile, numerous design
methods have emerged to optimize existing AMPs or generate
de novo AMPs with various model architectures.[9] To integrate
these two design modes and further improve the model perfor-
mance, we presented AMPainter, a framework based on deep
reinforcement learning. We successfully applied AMPainter to
three types of initial peptides (known AMPs, signal peptides, and
random sequences), and obtained a series of novel AMPs with
the guidance of an antimicrobial activity predictorHyperAMP. In

vitro experiments demonstrated a notable success rate (80% for
SP, and 60% for random sequences) for the top ten novel AMPs.
Without restricting the types of initial sequences, AMPainter

effectively broadens the AMP sequence space. Although, we can-
not guarantee that every initial sequence can be transformed
into a highly active AMP within limited mutation steps, the opti-
mization directions are aligned with increasing reward scores, as
demonstrated by the ’painting’ capability of AMPainter. During
the evolution process, we did not incorporate complex rewards
beyond the antimicrobial potency of the peptides. In addition, we
only took this data-driven predictivemetric into account when se-
lecting evolved peptides for experimental validation, thereby re-
ducing the dependence on expert knowledge. It should be noted
that, although the HyperAMP predictor was trained on the MIC
data of E.coli, the AMP sequences within the training sets also
exhibit activity against other microbes with comparable label dis-
tributions (Figure S9, Supporting Information). In addition, our
MICmeasurement results indicate that the evolved AMPs are ef-
fective in inhibiting both Gram-negative and Gram-positive bac-
teria. Therefore, we propose using HyperAMP as a general met-
ric for assessing antimicrobial activity.

Adv. Sci. 2025, e06332 e06332 (8 of 13) © 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH
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Another advantage of AMPainter is that it can provide a set
of parallel evolutionary paths when iteratively adding mutations
to an initial sequence. In particular, we have verified the con-
sistency between the actual antimicrobial potency and the pre-
dicted antimicrobial potency along the evolutionary path of the de
novo designed AMP R04. Typical charge-based mutations were
observed along this path. We propose that these sequences de-
rived from parallel paths can function as artificial evolutionary
profiles, potentially serving complementary roles to actual multi-
ple sequence alignments (MSA) in related tasks.
There are still some limitations of AMPainter. The current

model only supports one-point substitution at each iteration and
excludes multi-point substitution, insertion, and deletion opera-
tions. Also, AMPainter can only handle 20 canonical amino acids,
due to the lack of a reliable activity predictor for non-canonical
peptides. This limitation restricts the evolution space of each se-
quence to some extent. Furthermore, hemolysis and cytotoxicity
are not considered during our virtual evolution, which is a chal-
lenging task that needs to be addressed. Given that current pep-
tide toxicity predictors mostly function as binary classifiers with
limited training data, we did not incorporate toxicity rewards into
AMPainter to ensure stable training. However, AMPainter can be
easily used in conjunction with existing toxicity predictors to fil-
ter out potentially toxic peptides. For example, ToxDL[39] is one of
our favorites, which successfully recognized 12 of 16 toxic AMPs
in our tests with CC50 of less than 128 µM, indicating a recall of
75%.
In addition, a thorough study on the function mechanisms

of the generated AMPs is still required. Recent studies have in-
vestigated the combination of simulation or wet lab assay data
with machine learning tools to assess the membrane selectivity
of peptides.[40,41] How AI techniques can push the boundaries of
the mechanism-driven design of AMPs remains to be explored.
We anticipate developing such design strategies in the future.

4. Experimental Section
Data Curation: HyperAMP Dataset: The training, validation, and test-

ing datasets for HyperAMP contained AMPs and non-AMPs. The AMP
dataset was collected from PepVAE[15] with their minimal inhibitory con-
centration (MIC) labels against E.coli. Peptides with chemical modifica-
tions and disulfide bonds were excluded to avoid their effects on activity.
Since HyperAMP encoded a sequence via sliding windows of 2-, 3-, and
4-gram fragments, peptides whose lengths were less than five were also
filtered out. The dataset included 3,265 AMPs in total. Non-AMPs with
the same amount were selected from short peptides in Uniprot without
antimicrobial-related annotations, as processed by SenseXAMP,[42] and
were labeled with zero. The entire dataset contained 6,530 peptides with
a length distribution of [5,40] and was split as the training, validation, and
testing sets in a ratio of 8:1:1 randomly. The output of HyperAMP was the
antimicrobial score, which was transformed from logMIC values following
the Equation (1) below (Figure S3a, Supporting Information).

ri =
1

1 + 10logMICi−2
(1)

where ri is the reward score of peptide i.
Fine-Tuning Dataset
To fine-tune the Ankh-base model on sufficient AMPs, 9,149 non-

overlapping AMPs were collected from 11 AMP databases, including
APD3,[43] DRAMP,[4] and DBAASP,[44] etc.[45] 7,316 sequences remained

after removing redundancy via CD-HIT[46] with a cutoff of 0.9. The length
of this fine-tuning set ranged from 10 to 100 amino acids, with no further
restrictions. Following the training settings of the Ankh-basemodel during
its pretraining stage, the masking ratio was set as 20%, meaning that 20%
of the residues in each sequence were replaced with masking tokens.

Policy Network Training Dataset
Random sequences were used to train the policy network of AMPainter.

A thousand random sequences were produced with lengths in [10, 41] and
ensured no overlap existed between these sequences and the other two
mentioned AMP datasets (HyperAMP and fine-tuning datasets). Then CD-
HIT[46] was also employed to remove redundancy with a stricter cutoff of
0.7 to maintain the sequence diversity. Finally, this dataset comprised 966
random sequences for training the policy network.

Initial Evolving Datasets: Three sets of initial sequences were evolved
by AMPainter, which included known AMPs, signal peptides, and ran-
dom sequences.

Known AMPs: Part of the AMPs from the test set of HyperAMP were
used as initial sequences for optimization, as they were not seen by AM-
Painter during the training process. To compare AMPainter with the analog
generationmode of HydrAMP,[23] those AMPs with lengths of less than 25
residues were kept to meet HydrAMP’s limit. Then the remaining AMPs
were ranked by their actual MIC labels and the top 200 AMPs with MIC
values exceeding 10 µ M were selected.

Signal Peptides: Signal peptides were membrane-active protein frag-
ments. 4,664 signal peptides from the training set of SignalP 6.0[47] were
considered. The signal peptides derived from bacteria (including both
Gram-positive and Gram-negative) with lengths in [10, 30] were kept, con-
sidering the membrane selectivity of evolved AMPs. Then peptides con-
taining cysteine (C) or three identical amino acids in a row were excluded
due to difficulty in synthesis.[23] The first methionine (M) of each peptide
was also removed, as it was translated from the start codon during ex-
pression and had no relation to membrane-active function. As a result,
708 bacterial signal peptides were kept for modification.

Random Sequences: The number of random peptides to be evolved was
set as 200, with lengths ranging in [10, 30] as well. To prevent the forma-
tion of disulfide bonds and its effect on peptides, cysteine was excluded
from the amino acid composition and the remaining 19 types of amino
acids were used with a balanced frequency distribution. No sequences
contained three identical amino acids in succession.

AMPainter Model: HyperAMP Predictor:
HyperAMP was a regressor that predicted the antimicrobial score of

the input peptide sequence. The framework of HyperAMP is shown in
Figure S1a (Supporting Information). A peptide was split into sliding
fragments with different lengths (2-, 3-, 4-gram). Each peptide was en-
coded as a hypergraph H =< V, E >, where residues were nodes (V =
{v1, v2,… , vm}) and fragments were hyperedges (E = {e1, e2,… , en}). The
hypergraph can be denoted by an incidence matrix H ∈ ℝm×n, whose en-
tries are:

h(v, e) =

{
1, if v ∈ e
0, if v ∉ e

(2)

Residue-level node features were 768-dimension embeddings from pre-
trained language model Ankh-base,[29] and hyperedge weights were the
term frequency-inverse document frequency (TF-IDF) values of the corre-
sponding fragments. The hypergraphs of each level were fed into a hyper-
graph neural network (HGNN),[48] an expansion of the graph convolution
network. The hyperedge convolution included two message-passing oper-
ations, from nodes to hyperedges and from hyperedges to nodes, follow-
ing Equation (3) below:

X(t+1) = 𝜎(D−1∕2
v HWD−1

e HTD−1∕2
v X(t)Θ) (3)

where X(t) is the matrix of node features at t layer, and W is the diagonal
matrix of hyperedge weights (W = diag(TF − IDF1, TF − IDF2,… , TF −
IDFn)). H is the incidence matrix of the hypergraph. Dv and De denote
the diagonal matrices of the vertex and edge degrees, respectively. Θ is
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the learnable parameter during training. The hypergraph Laplacian is de-
fined as L = D−1∕2

v HWD−1
e HTD−1∕2

v , hence Equation (3) can be formulated
as X(t+1) = 𝜎(LX(t)Θ), where 𝜎 denotes the ReLU activation. Two hyper-
edge convolution layers are included in HGNN. Then X(2) is pooling as
the concatenation of both flattened and averaged vector to output Y(l) of
fragment level l (Figure S1b, Supporting Information). Y(2), Y(3), and Y(4)

from three-level HGNNs were concatenated and used for regression with
a two-layer fully-connected neural network. The dimensions of layers were
640 and 320, and the activation function is ReLU.

TF-IDF was a commonly used encoding approach in the field of natural
language processing.[49] TF was the emerging frequency of each word in
a sentence, representing their importance. IDF was used to prevent the
effects of some meaningless conjunctive words with high TF throughout
the document. A peptide sequence Pi was defined as a sentence consisting
of n continuous amino acid fragments ei (Equation (4)). The entire training
set was defined as the document consisting ofN peptides. Hence, the TF-
IDF value of a single fragment ei can be calculated as Equation (5).

Pi = (e1, e2, e3,… , en) (4)

TF − IDFi =
C(ei)
n

× log N
N(ei)

(5)

where C(ei) is the counts of ei in peptide Pi, and N(ei) is the counts of
peptides containing ei in the set of all peptides.

HyperAMP was developed based on PyTorch and Deep Hypergraph
(DHG) libraries.[48] The optimizer was Adam and the loss function was
the mean squared error function. The learning rate was 0.0001 and the
batch size was 128. The training epoch was set to be 20 and early stop-
ping was adopted to avoid overfitting.

Fine-Tuned Language Model:
The Ankh-base model was fine-tuned on AMP sequences to ensure its

decoding preference. To keep up with the pretraining stage of Ankh-base,
the same hyperparameters were used, including a learning rate of 0.0003,
a weight decay of 0.0005, and a batch size of 16.[29] The number of epochs
was two, since fast convergence on this data scale was observed. The en-
tire fine-tuning process was completed in 20 min on an NVIDIA A40 GPU.
When using this fine-tuned language model to decode in the AMPainter
framework, the temperature was set as two and the beam number as ten
to maintain the diversity of output sequences.

Policy Network
A plain two-layer neural network was used as the policy network. When

inputting a peptide sequence of length L, the embedding of input peptide
xseq ∈ ℝL×L was numerized with torch.nn.Embedding. The policy network
would produce the probability pseq ∈ ℝL×1 to be sampled for assigning
the mutation site (Equation (6)).

pseq = Softmax(Linear(xseq)) (6)

From the perspective of reinforcement learning (RL), the current state
was the peptide sequence, the action was to select where to mutate (and
to decode the mutated amino acid by the fine-tuned language model to
finish a mutation step), and the reward score was the antimicrobial score
predicted by HyperAMP. To fit RL training, a sigmoid-like transformation
form in Equation (1) was used to scale the MIC labels into [0,1]. Predicted
outliers will be assigned a score of one if it is larger than one, or zero if it
is less than zero.

The policy gradient-based REINFORCE algorithm[50] was utilized
to train AMPainter. Within the timestep T − 1, a training trajec-
tory was a sequential connection of the state, action, and reward
(s1, a1, r1,… , sT−1, aT−1, rT−1). A policy 𝜋𝜃(at|st) was the output with pa-
rameter 𝜃 at step t. For t in T − 1 timesteps, the sum of rewards rt is cal-
culated asGt without the discount factor, since all mutations were consid-
ered to be of equal importance:

Gt =
T−1∑
t=0

rt (7)

And the objective function of REINFORCE was used to update the pa-
rameter 𝜃:

J(𝜃) =
T−1∑
t=0

ln𝜋𝜃(at|st)Gt (8)

Each sequence was mutated once during each iteration, and this pro-
cess was repeated eight times in an episode. To avoid repeated sequences
and encourage the exploration, the ln𝜋𝜃(at|st) would he halved if st ∈
{s1, s2,… , st−1}. The maximum number of training episodes was 40. The
average of reward scores Gt was monitored at each episode to evalu-
ate convergence. If there was no improvement in it within 15 episodes,
the training would be halted. The total training time of AMPainter on an
NVIDIA A40 GPU was about 36 wall-clock hours.

Comparative Experiments: Comparisons of HyperAMP
Due to the lack of trainable antimicrobial activity regressors, HyperAMP

was compared with six baseline models in Figure S2 (Supporting Informa-
tion). Transformer, CNN-LSTM, CNN-GRU, MLP, and CNN models were
built with DeepPurpose.[51] Transformer took in the peptide fragments,
MLP used amino acid composition (AAC), and others used one-hot en-
coding. As for GCN, the hypergraph in HGNN were transformed to graph
by clique expansion and kept the same node features. The hyperparameter
settings of the baseline models were the same as those of HyperAMP.

As for the embedding comparison, five pretrained language models
were used (Ankh-base, Ankh-large,[29] ESM-1b,[52] ESM-2,[53] and ProtT5-
XL-UniRef50[54]). Their embedding dimensions were 768, 1536, 1280,
1280, and 1024, respectively. The dimension of the first layer in HGNN
was set in consistency of the embedding. Other model settings were kept
the same.

Regression evaluationmetrics includingmean square error (MSE), root
mean square error (RMSE), Pearson correlation coefficient (Pearson), and
Spearman’s rank correlation coefficient (Spearman) are calculated as fol-
lowing:

MSE = 1
n

n∑
1

(bi − ai)
2 (9)

RMSE =

√√√√ 1
n

n∑
1

(bi − ai)2 (10)

Pearson =
∑n

i=1(ai − a)(bi − b)√∑n
i=1(ai − a)2

∑n
i=1(bi − b)2

(11)

Spearman =
∑n

i=1(R(ai) − R(a))(R(bi) − R(b))√∑n
i=1(R(ai) − R(a))2

∑n
i=1(R(bi) − R(b))2

(12)

where ai and bi denote the actual and predicted values of the sequence i,
respectively. R(∙) calculates the ranking number.

Ablation Study of Fine-Tuned Language Model
In the ablation study, two ablating versions of the fine-tuned language

model part were adopted to train the policy network (Figure S3b, Support-
ing Information). One was to directly use pretrained Ankh-base model
without fine-tuning with AMPs and the other was to choose amino acid
type randomly instead of incorporating the language model. All other set-
tings were the same as for AMPainter.

Comparing With Other Evolutionary Methods
AMPainter was compared with other ten relatedmethods for improving

AMPs, among which HydrAMP was an AMP generation model and others
were evolutionary approaches. EvoPlay, PEX, and MCMC were explored
with their original codes, while others were all implemented through the
FLEXS library.[55] HyperAMP was added as the surrogate model for all
methods except HydrAMP.
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1. HydrAMP:[23] a conditional VAE model for AMP generation. Here its
analog generation mode was adopted and filters were the default set-
ting.

2. EvoPlay:[28] a protein engineering model based on Monte Carlo Tree
Search (MCTS). It explored the mutations under the guidance of fit-
ness functions.

3. PEX:[56] a proximal exploration approach. It assumed that local op-
tima existed near the wild-type sequence and tried to minimize the
number of mutations. Fitness was scored via a mutation factoriza-
tion network (MuFacNet).

4. MCMC:[57] a protein engineering model based on the Markov Chain
Monte Carlo algorithm that decided to accept mutations according to
the Metropolis-Hasting rule.

5. AdaLead:[55] a model-guided evolutionary approach that optimized
query sequence via batches with a high-climbing search strategy.

6. DyNA-PPO:[27] a sequential decision-making model for sequence de-
sign based on model-based reinforcement learning, which used prox-
imal policy optimization (PPO).

7. CbAS:[58] a method called conditioning by adaptive sampling which
restricted sampling distribution in labeled dataset.

8. CMA-ES:[59] a statistical method called covariance matrix adaptation
evolution strategy. It estimated the covariance matrix to adjust the
search.

9. BO:[60] the traditional Bayesian optimization.
10. random: mutate randomly.

The top 200 sequences ranked by HyperAMP scores from all meth-
ods were collected for analysis. TwoMIC regressor, MBC-Attention[30] and
the ensemble model of AMP-READ[31] were used as validation predictors.
Their predictive scores were represented as the negative logarithmic value
of MIC (pMIC) so a higher score indicated better antimicrobial activity
(Figure 2a). The sequence diversity in Figure 2c was calculated as Equa-
tion (13).

Diverity = mean({Levenshtein(xi, xj) : xi, xj ∈ X, xi ≠ xj}) (13)

where X is the output set of sequences, and xi and xj are two different se-
quences.

Optimizing by Fitness Score
The fitness score Equation (14)[13,24] was used as the reward to train

AMPainter, instead of the HyperAMP score. Four fragments of Pg-AMP1
were evolved for five rounds using this new version of AMPainter. In each
round, ten parallel evolutions and eight iterations of mutation were per-
formed. The top 100 sequences were collected and used as initial se-
quences for the next round.

Fitness =

√
[
∑I

i=1Hicos(i𝛿)]2 + [
∑I

i=1Hisin(i𝛿)]2∑I
i=1 e

Hxi
(14)

where 𝛿 equals 100◦, Hi is the Eisenberg’s hydrophobicity of residue i,
and Hxi is the Pace-Schols’ helix propensity of residue i in a sequence of
length I.

MD Simulations: 3D structures of the designed peptides were pre-
dicted by AlphaFold 2[61] (ColabFold v1.5.5[62]) with single sequence
mode. CHARMM-GUI[63] was used to build lipid bilayer systems with
peptides parallel to the membrane surface above 2 nm. Two systems
with different lipid compositions were built for each peptide to mimic
both the E.coli inner membrane and the human plasma membrane
(Table S7, Supporting Information). 150 mM NaCl ions were added
to neutralize the system. The simulations were performed with GRO-
MACS 2018[64] and CHARMM36m force field.[65] The timestep was set
as 2 fs. The temperature was kept at 310 K using the Nose-Hoover
method and pressure at 1.0 bar with the Parinello-Rahman method.
The cutoff value of the Lennard-Jones potential was 1.2 nm. The NVT
and NPT equilibriums were conducted following the default procedures

of CHARMM-GUI. All runs were produced for 500 ns with three in-
dependent repeats. The interaction ratio between the heavy atoms of
the peptides and the heavy atoms of the membrane was calculated by
MDAnalysis.[66]

Wet-Lab Validations: Peptide Synthesis
All peptides were synthesized via solid-phase peptide synthesis by DG-

peptide Co., ltd. Their molecular weights were verified by mass spec-
trometry and their purity (>95%) was verified by HPLC (results shown in
Figure S10–S53).

Minimal Inhibitory Concentration Measurement
Four standard bacteria used for the MIC test were Escherichia coli

ATCC25922, Pseudomonas aeruginosa ATCC9027, Staphylococcus aureus
ATCC6538, andBacillus subtilisATCC6633. The testing procedures followed
the Hancock methods.[67] The peptides were diluted in sterilized PBS to
512 µM as storage solutions. Then twofold gradient dilution was per-
formed to make different concentrations (128, 64, 32, 16, 8, 4, 2, 1, 0.5,
0.25, and 0.125 µM) of AMPs. Each bacteria was incubated in LB broth
at 37 °C until its absorbance at 625 nm reached 0.08–0.10, then diluted
10,000 times and added into a sterile 96-well polypropylene plate (Gre-
nier, #655201). A co-incubation system included 100 µL peptide solution
and 100 µL bacterial suspension. After incubation at 37 °C for 18 h, the
MIC was determined as the lowest peptide concentration that prevented
bacterial growth. All tests were performed in triplicate wells, and the MIC
readings from the triplicate wells were consistent.

Resistance Test
A 30-day resistance test was conducted to observe the resistance-

causing trend of both AMPs and antibiotics. Ciprofloxacin (Aladdin,
#C129896) was used as the control. Each day, 1 µL bacterial suspension
from the wells containing the highest concentration of AMPs which en-
abled the growth of bacteria (1/2 current MIC) was extracted into 10 mL
LB broth to dilute 10,000 times. Other procedures were the same as above
to detect MICs. The concentration gradients of the R04 peptide were 16,
8, 4, 2, 1, 0.5 µM. All tests were performed in triplicate.

Hemolysis Assay
In vitro hemolysis and cytotoxicity were measured by WuXi AppTec Co.,

ltd. The rat blood was collected and mixed in PBS, then centrifuged at 500
g for 5 mins to make the red blood cell solution (RBC, 10%). Two-fold
gradient dilution was performed to obtain different concentrations (128,
64, 32, 16, 8, 4, 2, and 1 µM) of AMP solutions. Then AMP solutions were
added into 100 µL RBC to make the test solution and incubated at 37 °C
for 1 min. The assay solution was centrifuged at 2500 g for 6 mins. After
centrifugation, the 75 µL supernatant was placed into a 96-well plate. PBS
was used as the vehicle control and 0.1% Triton X-100 was the positive
control. The absorbance of the supernatant in each well was detected at
450 nmusing EnVison (PerkinElmer) and the percentage of hemolysis was
calculated as Equation (15). The HC25 value was fitted using GraphPad
Prism 8. All tests were performed in triplicate.

Hemolysis% =
AbsAMP − AbsPBS

AbsTritonX−100 − AbsPBS
× 100 (15)

Cytotoxicity Assay
HEK293T cells were cultured in DMEM supplemented with 10% FBS

and incubated at 37 °C with 5% CO2. After planting the cells into a 96-well
plate and incubated overnight, AMP solutions were added. The gradient
dilution of AMPs followed the same setting as mentioned in the hemoly-
sis assay. Staurosporine (STS) was used as a positive control and PBS as
vehicle control. STS was diluted to 60, 12, 2.4, 0.48, 0.1, 0.02, 0.0038, and
0.0008 µM. After incubation for 72 h, the CellTiter-Glo®Luminescent as-
say was performed to evaluate the cell viability. After equilibration to room
temperature, the 96-well plate containing treated cells was loaded with
100 µL CellTiter Glo (CTG, Promega) reagent each well. The plate was in-
cubated for 30mins, then detected by the EnVision system at a wavelength
of 570 nm. Data were fitted and analyzed with GraphPad Prism 8. All tests
were performed in triplicate.
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