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Abstract

Haplotype phasing — to determine which genetic variants reside on the 
same chromosome — and genotype imputation — to infer unobserved 
genotypes — have become indispensable steps to improve genome 
coverage for genomic analyses such as genome-wide association 
studies. Several tools exist for haplotype phasing and genotype 
imputation, all of which have continuously evolved to accommodate 
the increasing sample sizes of genomic studies and rapidly improving 
sequencing technologies. To fully leverage these recent advances, 
researchers must deliberate several practical considerations, including 
tool choice, quality control filters, data privacy concerns and reference 
panel choice. Looking ahead, long-read sequencing technologies 
are poised to bring novel opportunities to this field and drive 
methodological development.
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rely on IBD and Mendelian transmission rules compared with linkage 
disequilibrium-based phasing and imputation in unrelated population 
samples (the details of which can be found in a previous review53). 
Furthermore, we do not cover human leukocyte antigen imputation 
and refer interested readers to a previous tutorial54.

Method developments for haplotype phasing
The HMM framework has been widely adopted and forms the 
basis of most of the current computational phasing methods, with 
parameters estimated iteratively using, for example, stochastic 
expectation-maximization algorithms55. More recently, these methods 
have been updated with computational improvements and to develop 
rare variant phasing, specifically in the case of Eagle231, Beagle533 and 
SHAPEIT532, which are state-of-the-art methods and widely used in 
various genomic analyses34,35,56,57 (Box 1; see ref. 53 for a comprehensive 
review of the base frameworks).

Computational improvements
An HMM generally has three important components: hidden states, 
emission probabilities and transition probabilities. In an HMM for 
phasing, emission probabilities decide how to select the unobserved 
haplotypes based on the observed data, and transition probabilities 
determine how hidden states change along chromosome segments. Hid-
den states fully determine the underlying unobserved true haplotypes, 
which are often chosen from a haplotype pool constructed either from 
external reference haplotypes (phasing with reference) or from already 
phased haplotypes of the target samples (phasing without reference), 
thus leading to an important problem of haplotype matching. Given 
this framework, the computational burden increases quadratically with 
the number of reference haplotypes and, therefore, computational 
improvement has been a main focus of modern methods.

The development of the positional Burrows–Wheeler transform 
(PBWT)58 was a milestone for modern phasing and imputation meth-
ods. It presents a series of algorithms for haplotype data compression 
and efficient haplotype matching, reducing the computational com-
plexity from quadratic to linear in terms of the number of reference 
haplotypes. As such, Eagle2, Beagle5 and SHAPEIT5/SHAPEIT459 all 
deploy PBWT, albeit in different manners (Table 1). For instance, Eagle2 
uses PBWT to represent the full set of haplotypes, whereas Beagle5 
and SHAPEIT5/SHAPEIT4 use PBWT to identify customized reference 
haplotypes for each target individual.

Phasing of rare variants
As sequencing data from more individuals continue to amass, drasti-
cally more rare variants are discovered, far outnumbering common 
variants. For example, among ~400 million variants detected in the 
freeze 5 data of the Trans-Omics for Precision Medicine (TOPMed) 
programme, 97% have a minor allele frequency (MAF) below 1%, with 
46% being singletons (minor allele count of 1) that are present in het-
erozygous form in only one out of the >53,000 individuals34. Such an 
emormous amount of particularly rare variants poses unprecedented 
challenges for phasing and imputation, which is another focus for 
modern methods.

Beagle533 was the first tool to provide a different approach for 
phasing rare variants compared with common variants. It adopts a 
two-stage algorithm where common variants (MAF >0.2%) are phased 
first to build a haplotype scaffold, and then rare variants are phased bor-
rowing techniques from genotype imputation with phase information 
converted from imputed allele probabilities. This multistage phasing 

Introduction
Genotype information is increasingly abundant, as whole-genome 
sequencing (WGS) and whole exome sequencing costs have continu-
ously decreased and, for studies with large sample sizes but limited 
funding, array genotyping is an affordable alternative for directly 
assaying up to ~5 million genetic markers. However, all these data are 
‘unphased’, meaning they do not specify which alleles are inherited 
together on the same parental chromosome. The process of inferring 
phased haplotype information from unphased genotypes is called 
haplotype phasing (or, simply, phasing) (Fig. 1a), which is essential 
for various genetic analyses, including the calculation of population 
genetics statistics1–6, identification of compound heterozygous events7 
and inferences and analyses incorporating local ancestry8–12. In addi-
tion, phasing is important for estimating missing or unobserved geno-
types with the aid of reference panels (Fig. 1b), a process known as 
genotype imputation (or, simply, imputation)13–15, which can greatly 
increase genome coverage and improve the power of genome-wide 
association studies (GWAS)16,17. Therefore, phasing and imputation 
have become standard practice in current population-scale GWAS 
with array genotyping data.

Computational methods for phasing and imputation have 
been proposed since the early 2000s, including PL-EM18, PHASE19, 
fastPHASE20, Beagle21, MaCH22 and IMPUTE223. These early methods 
for population-based statistical phasing explored different method-
ologies, including the greedy algorithm24, expectation-maximization 
algorithm18,25, long-range  identity-by-descent (IBD)26, phylogeny 
tree-based methods27,28 and coalescent-based hidden Markov model 
(HMM). HMM coupled with the product of approximate conditionals 
(PAC) framework was first proposed by Li and Stephens29,30 and remains 
predominant in currently used methods. Similarly, most genotype 
imputation methods have relied (and continue to do so) on PAC-based 
HMMs where genotypes and haplotypes are modelled conditionally on 
haplotypes of other individuals.

More recently, owing to the unprecedented increase in the scale of 
genetic studies in terms of number of individuals and genetic variants, 
methods have been developed and updated to improve computational 
efficiency (Fig. 1c). Such methods include Eagle231 and SHAPEIT532 
for phasing; minimac413 and IMPUTE515 for genotype imputation; 
and Beagle5 for phasing33 and genotype imputation14. In addition, 
large-scale imputation reference panels have been constructed for 
more accurate imputation with the ability to impute rarer variants34,35. 
Web-based imputation servers have also been developed to offer phas-
ing and imputation service to the public without granting users direct 
access to individual-level genotype data in reference panels34,36, provid-
ing invaluable resources to the community. Lastly, many studies are 
now focusing on practical considerations of imputation, including 
post-phasing and post-imputation quality control37–41, the imputation 
of disease cohorts42–44 and different ancestral populations45–48, and 
the imputation of variants beyond single-nucleotide polymorphisms 
(SNPs)49–52.

In this Review, we discuss recent method developments for 
haplotype phasing and genotype imputation in unrelated individu-
als, highlighting various studies to exemplify how these methods 
facilitate genomic analyses. We also summarize practical considera-
tions for phasing and imputation, especially for post-phasing and 
post-imputation quality control. We then discuss recent developments 
enabled by long-read sequencing technologies, as well as promising 
future directions. Note that we will not discuss phasing and impu-
tation specifically designed for family data, where it is possible to 
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strategy was further extended by SHAPEIT532, where they adopted a 
three-stage phasing for common variants (MAF >0.1%), non-singleton 
rare variants and, specifically, singletons. In brief, common variants 
are processed with its earlier version SHAPEIT459; rare variants are 
phased similar to Beagle5; and singleton phasing is achieved through 
IBD sharing patterns (see Box 1).

Practical considerations for haplotype phasing
Given the recent methodological developments specifically for Eagle2, 
Beagle5 and SHAPEIT5, an important practical question is which 

method to use. This decision can be based on the performance of dif-
ferent phasing methods resulting from phasing accuracy and other 
practical considerations.

Phasing accuracy
Phasing accuracy is commonly quantified on the basis of phasing errors, 
which are also referred to as switch errors, where two estimated hap-
lotypes are incorrect by being switched versions of the truth. A special 
case of switch error is called flip errors, in which the switched segment 
is a single base pair where the two alleles are flipped into the wrong 
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Fig. 1 | Conceptual basis and technological development of phasing and 
imputation. a, A conceptual illustration of phasing. After read alignment with 
reference genome, we can infer or call genotypes of target individuals, but phase 
information (that is, information about which alleles are inherited together on 
the same parental chromosome) is unknown. Phasing is the process to make such 
inference starting from unphased genotype data. b, A conceptual illustration 
of imputation from array genotype data. Imputation is the process to infer 
genotypes at untyped markers with the aid of reference panels. Heuristically, 
it identifies haplotype segments in reference panels that match genotypes 
at typed markers for imputation of target individuals and then imputes by 

simply copying over the shared segments. In the right panel (after imputation), 
imputed genotypes at untyped markers for the target sample are denoted with 
lower-case letters, with the colour representing the corresponding reference 
haplotype from which the alleles are copied. c, A timeline of recent major 
developments in phasing and imputation, which begins from the introduction 
of positional Burrows–Wheeler transform (PBWT), a highly efficient method 
for haplotype representation that paved the road for more recent phasing and 
imputation methods focusing on computational improvements. A timeline of 
earlier evolvement (before 2018) is detailed in ref. 77. lcWGS, low-coverage whole 
genome sequencing; LRS, long-read sequencing.
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haplotypes (Fig. 2a). The three major phasing methods, Eagle, Beagle 
and SHAPEIT, were reported to have similarly high accuracy and low 
error rates, especially from earlier studies focusing on phasing com-
mon variants. For example, phasing accuracy was assessed for Beagle60, 
SHAPEIT261, SHAPEIT362, Eagle2 and two IBD-based methods, SLRP63 
and AlphaPhase64, showing that SHAPEIT2, SHAPEIT3 and Eagle2 pro-
vided the most accurate results in simulated data65. Another study com-
pared the phasing accuracies of fastPHASE, Beagle4, IMPUTE2, MaCH, 
SHAPEIT2, HAPI-UR66 and Eagle2 and reported that Eagle2, SHAPEIT2 
and Beagle4 performed the best alternately in different scenarios, with 
Eagle2 being the most stable method37. Finally, the phasing accuracies 
of AlphaPhase, Eagle2, SHAPEIT2, SHAPEIT4, Beagle3, Beagle4, Beagle5 
and FImpute67 were compared in another study using cattle pedigree 
data, which found that either SHAPEIT4 or Beagle5 was the most accurate 
method under various scenarios68. The same study also indicated that 
most tools achieved high accuracy at short genomic distances (<1 Mb), 
with minimal differences across these methods68. Acknowledging the 
strengths and weaknesses of these methods, some studies explored the 
consensus haplotype estimator by aggregating results from different 
methods and taking the most frequent haplotypes voted across method 
outputs as the final phased results37,38. Such consensus strategies for 
phasing were shown to achieve more accurate results than each indi-
vidual method; however, running multiple tools may be computationally 
intensive, such that practical applications should consider the balance 
between improved accuracy and higher computational costs.

Although the studies reviewed above provided important insights 
into phasing accuracy comparison, there is still an insufficient number of 
benchmarking studies of phasing methods — especially for recent meth-
ods focusing on improving computational efficiency for biobank-scale 

studies (and, thus, for rare variants) — partly owing to the difficulty of 
obtaining the gold-standard truth of phased haplotypes. Most evalua-
tion studies rely on phased results from family data, but these also have 
some limitations. For example, regions with low variant density can lead 
to inaccuracies in family-based phasing69; in addition, observed Men-
delian inconsistencies due to genotyping errors or de novo mutations 
may be mistreated as phasing errors70. The advantages of long-read 
sequencing technologies allow for the resolution of longer haplotypes, 
which may serve as an alternative standard for phasing evaluation.

Owing to their abundance and rareness, phasing error rates for rare 
variants are substantially higher compared with common variants32,39. 
To improve phasing accuracy for rare variants, a recent post-phasing 
correction method, SAPPHIRE, has been developed by integrating 
phasing results and read-based information39. It first identifies poorly 
phased variants based on phasing confidence scores from SHAPEIT5, 
extracts their associated sequencing reads and then performs rephas-
ing to either validate the current phase or flip the alleles, motivated by 
the fact that most incorrectly phased rare variants are in the form of flip 
errors (Fig. 2a). Such correction, based on the SAPPHIRE manuscript, 
can decrease error rates by up to 17%, particularly for singletons. How-
ever, this method requires raw reads data for correction, which may 
not be readily available and can be rather demanding in storage costs. 
As noted by the authors, sequencing reads from 200,031 individuals 
in the UK Biobank require 3.5 petabytes of storage — an amount that is 
infeasible for most researchers.

Other practical considerations
Beyond accuracy, computational considerations (for example, com-
putional efficiency and hardware requirements such as graphics 

Box 1 | Frameworks of phasing methods
 

Eagle231 adopts a haplotype copying model similar to previous 
HMM-based methods, with distinctions in haplotype structure 
representation and selection of diplotypes, that is, phased haplotype 
pairs. Most earlier methods approximate the haplotype structure, 
for example, by merging haplotypes into local clusters21,167, for 
computational efficiency. By contrast, Eagle2 represents the 
full list of haplotypes in a tree structure by using the positional 
Burrows–Wheeler transform (PBWT)58. It further explores diplotypes 
using a branching-and-pruning beam search, removing unlikely 
phase paths to limit the search space and achieve computational 
efficiency. Note that Eagle2 was primarily designed for phasing with 
reference, but it also implemented phasing without reference, where 
identity-by-descent (IBD)-based long-range phasing method from 
its prior work, Eagle1168, was adopted as an initial step. Compared 
with Eagle124 (which showed decreased accuracy with sample size 
<50,000), Eagle2 achieved higher accuracy for both small and large 
haplotype reference panel sizes, as demonstrated by the developers 
for reference sizes ranging from 15,000 to 100,000 haplotypes.

Beagle533 takes the Li and Stephens HMM29 using a parsimonious 
state space of individual-specific composite reference haplotypes14, 
with a sliding-window approach for memory efficiency. In addition, it 
implements a two-stage phasing algorithm designed specifically for 
phasing the increasingly large number of rare variants. The algorithm 
first phases common variants (minor allele frequency (MAF) >0.2%) 
with a progressive phasing methodology to build the haplotype 

scaffold consisting of estimated phase information for common 
variants, and then infers haplotypes for rare variants borrowing 
strategies from genotype imputation with phase information 
converted from imputed allele probabilities.

SHAPEIT532, built upon its prior work, SHAPEIT459, was designed 
for phasing rare variants in the context of biobank-scale WGS or 
whole exome sequencing data. It implements three different phasing 
modes for three variant types defined by MAF: common variants 
(MAF >0.1%), rare variants (MAF ≤0.1% and minor allele count >1) 
and singletons (minor allele count of 1). First, common variants are 
phased using SHAPEIT459, which applies PBWT for computational 
improvement and offers options to integrate additional layers of 
information such as reference haplotypes, long-read sequencing data 
or haplotype scaffold (with phase known for a subset of genotypes). 
Second, the phased common variants serve as a haplotype scaffold 
to further phase rare variants, which takes a similar streategy to 
Beagle533, with a sparse data representation where monomorphics 
(all genotypes being homozygotes of the major allele) are discarded. 
Finally, SHAPEIT5 phases singletons by leveraging the longest IBD 
sharing patterns between each target haplotype and the conditioning 
haplotypes, based on the assumption that singletons reflect recent 
mutation events and are therefore expected to share the least with 
other haplotypes. It therefore assigns the minor allele of a singleton 
to the target haplotype with the shortest shared segment169.
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processing units71,72) and study aims (for example, special interest 
in rare variants and the need to use some specific reference pan-
els such as the four-digit multi-ethnic human leukocyte antigen 
reference73) will also impact practical choices of phasing methods. 
For example, for phasing ultra-low-coverage WGS (ulcWGS) (that is, 
sequencing depth ~0.1–1×, which is much shallower than the earlier 
low-coverage WGS in, for example, the 1000 Genomes project74) 
where genotypes are not determined but represented with geno-
type likelihood, Beagle5 or SHAPEIT5 are more desirable as they can 
handle such genotype uncertainty — a feature that Eagle2 does not 
support. Furthermore, because cloud computing has been widely 
adopted in the genetics community (for example, the UK Biobank 
Research Analysis Platform), computational cost is a major considera-
tion. The computational time of Beagle5 and Eagle2 scales linearly 
with target sample size, whereas SHAPEIT4 claims sublinear scaling 
by its developers59. SHAPEIT5 further improved its computational 
efficiency over SHAPEIT4 by using a parallelization scheme for the 
PBWT construction for common variants phasing32. Therefore, inves-
tigators may choose SHAPEIT5 for large biobank-scale studies with 
computational efficiency and when studying rare variants is a top pri-
ority. Notably, as most methods have implemented a predetermined 
parameter for the number of conditioning or reference haplotypes 
of each target haplotype (HMM state size), computational time will 

generally not be affected by the size of reference panels31. Some other 
considerations include specific variant types of primary interest, 
including multi-allelic structural variants (SVs) or variants in the 
major histocompatibility complex region. Currently, only Beagle5 
directly supports multi-allelic variants and copy number variations 
(if encoded correctly). In addition, all the methods may not perform 
well for phasing long SVs.

As the ultimate goal of most studies is not phasing itself but rather 
downstream genotype imputation and association, as well as vari-
ous haplotype-level analyses (Box 2 and Fig. 2b), investigators may 
prioritize choice of reference panels or ease of use over the actual 
phasing methods, especially when the focus is on common variants for 
which most methods perform highly similarly. Imputation servers have 
precompiled phasing, imputation and reference panels all together in 
one place, substantially improving accessiblity to general researchers. 
Therefore, we suggest future method developers to implement their 
methods on major imputation servers or cloud-based platforms to 
broaden the impacts.

Methods for genotype imputation
Early imputation methods inferred genotypes at ‘untyped’ (that is, 
unobserved) markers directly from genotype data. However, compu-
tational costs increase quadratically with sample size when modelling 

Table 1 | Summary of haplotype phasing and genotype imputation methods

Haplotype phasing

Method Eagle2 Beagle5 SHAPEIT5

Algorithm summary PBWT haplotype representation, 
beam search for phase paths

Two-stage phasing Three-stage phasing

Reference panel Full reference representation Customized reference for each 
target sample

Customized reference for each target sample

Specially handle rare variants No Yes Yes, even considering singletons

Allow multi-allelic variants No, split into biallelic required Yes No, split into biallelic required

Allow genotype likelihood No No, but Beagle4 does Yes

Sporadic missing data imputed Yes Yes Yes

Input file format vcf vcf vcf, bcf

Output file format vcf vcf vcf, bcf, xcf

Web availability Michigan imputation server
TOPMed imputation server

UK Biobank research analysis platform UK Biobank research analysis platform

Genotype imputation

Method Minimac4 Beagle5 IMPUTE5

HMM state space Collapsed reference sequences 
matched at genotyped positions

A fixed number of composite 
reference haplotypes

A subset of reference haplotypes represented 
with PBWT

HMM state space depends on 
number of reference haplotypes

Yes No Yes

Reference panel file format m3vcf, msav bref3 imp5

Reference file format relative size 1× ~0.15× ~0.2–0.3×

Output file format vcf vcf vcf, bcf, bgen

Imputation quality metric Rsq (based on haplotype dosage) DR2 (based on haplotype dosage) INFO (based on statistical information 
of population allele frequency)

Web availability Michigan imputation server
TOPMed imputation server

UK Biobank research analysis platform UK Biobank research analysis platform

HMM, hidden Markov model; PBWT, positional Burrows–Wheeler transform; TOPMed, Trans-Omics for Precision Medicine.
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unphased genotype data, prompting the development of ‘prephasing’ 
(that is, phasing the target cohort before imputation), which drastically 
reduces the computational burden (from quadratic to linear complex-
ity) and has become standard practice nowadays. Notably, sporadic 
missing genotypes in certain individuals are usually imputed in the 
prephasing step for many phasing methods.

For both genotype- and haplotype-based imputation, heuristically, 
the imputation task is fulfilled by identifying haplotype segments in 
reference panels that match imputation target individuals and then 
imputing the target by simply copying over the shared segments. 
Several tools exist for imputation from array genotypes (Box 3; see 
refs. 75–77 for comprehensive reviews of the base frameworks) as 
well as ulcWGS.

Imputation from array genotypes
Imputation was first developed to handle array genotypes, which 
range from several hundred thousand to ~5 million markers. Cur-
rently, the most widely used methods for genotype imputation 
from array genotypes are Minimac413, Beagle514 and IMPUTE515, all 
of which have undergone recent computational improvements to 
handle increasingly larger reference panels and target cohorts by 
reducing HMM state space and using new file formats. The Mini-
mac series began as MaCH22 and was later renamed to Minimac13,78 
when it adopted prephasing before imputation. Compared with 
its earlier versions, where each individual reference haplotype was 
treated as a hidden state, Minimac4 improves efficiency by collaps-
ing reference sequences that match at genotyped positions within 

a chromosome chunk77, which improves memory efficiency and 
computational speed. Similarly, Beagle5 reduces computational 
costs by constructing a fixed number of target-specific composite 
reference haplotypes through a non-overlapping sliding-window 
approach to ensure that the personalized composite reference cov-
ers the entire window while enabling parallel computing14. IMPUTE5 
incorporates PBWT for haplotype representation to select a subset of 
reference haplotypes specifically for each target, reducing compu-
tational complexity to linear or even sublinear with respect to target  
sample sizes15.

The above three methods also developed their preferred file 
formats of reference panels for efficient haplotype storage and fast 
reading (Table 1). Minimac4 takes mvcf format (specifically msav, 
a new mvcf format)79, which was first developed in Minimac3 (m3vcf 
format). This format records only unique representative haplotypes 
within small genomic segments, following a structure similar to 
that of vcf files. Beagle5 uses the bref3 format, which similarly parti-
tions chromosomes into chunks and applies different strategies for 
common and rare variants. This format records only the indices of 
haplotypes carrying minor alleles for rare variants, while storing 
common variants as unique allele sequences with pointers linking 
each haplotype to the corresponding sequence. The bref3 format 
uses two bytes to store each index compared with only one byte in 
bref2, which allows for longer chromosome chunks and higher com-
pression of reference files. The imp5 format applied in IMPUTE5 is 
similar to bref3 in principle, with index recorded for efficient region 
extraction.
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Fig. 2 | Post-phasing considerations and analyses. 
a, Two types of phasing error. Phasing errors can 
be classified into two categories: switch and flip 
errors. Switch errors refer to cases where, in certain 
chromosomal regions, the two haplotypes are 
incorrectly phased as switched versions of the 
true haplotypes. These errors are illustrated by 
regions with mismatched haplotype colours and the 
affected allele pairs highlighted in red. Flip errors 
refer to phasing errors at a single base pair where 
the two alleles are located in the wrong haplotypes. 
b, A comparison between variant association and 
haplotype association for both binary disease and 
quantitative trait under an additive model. Variant 
association focuses on the tests between some 
phenotype (a binary disease, or quantitative trait 
as illustrated here) and the genotypes at a specific 
genome position. Under the additive genetic model, 
variants are coded as 0, 1 or 2, representing the 
number of copies of a specific allele. Haplotype 
association with a primary haplotype of interest 
(the red haplotype) similarly counts copies of this 
haplotype and lumps all other haplotypes (grey) as 
a contrast group. Panel b is adapted with permission 
from ref. 12, Elsevier.
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Imputation for ulcWGS
Beyond Minimac413, Beagle514 and IMPUTE515, other methods have 
also been proposed, including those specifically focusing on imputa-
tion from ulcWGS data. As high-coverage WGS is still cost-prohibitive 
for large-scale samples, ulcWGS, an alternative approach to array 
genotyping, has been proposed and demonstrated to achieve similar 
coverage of common variants but better coverage for low-frequency 
variants compared with array genotyping80. More recently, ulcWGS 
is widely adopted in ancient genome imputation where the cover-
age is only ~0.1–1× (refs. 81,82). Owing to the low-coverage nature 
of this type of data, many genomic regions are covered with no or 
few reads for any given individual, and genotypes are represented 
in forms of likelihood rather than discrete genotype calls83. In these 
scenarios, standard imputation methods from array data may not 
be applicable; therefore, methods specifically designed for ulcWGS 
data have been proposed, including those for human diploid impu-
tation leveraging large reference panels (for example, GeneImp84, 
GLIMPSE83, QUILT85 and GLIMPSE286) and methods without references 
(for example, findhap87, STITCH88 and magicImpute89). Methods in the 
latter category have been used for imputing genotypes of non-human 
organisms as well.

Reference-based ulcWGS imputation methods are similar to 
array imputation in terms of how reference panels are used. Most of 

the methods also adopt the PAC framework29 or its variations where 
conditional probabilities of observed data on reference haplotypes 
are inferred. Furthermore, GLIMPSE and GLIMPSE2 both apply 
PBWT (similarly to IMPUTE5) to ensure rapid selection of a subset 
of most relevant references. However, ulcWGS imputation differs 
from array imputation in both input format and the core algorithms. 
Array imputation methods take discrete genotype calls as input and 
match with reference panels based on these genotyped markers, 
whereas ulcWGS imputation methods take sequencing reads (as in 
QUILT) or reads-derived genotype likelihoods (as in GLIMPSE and 
GLIMPSE2) as input, without requiring deterministic genotypes to 
start. Therefore, probability-based Gibbs sampling90 is more widely 
applied83,85,91 to account for the higher level of uncertainty in input 
data. Notably, Beagle4 (but not Beagle5) allows genotype likelihood 
as input for imputation and therefore can also be easily used for  
ulcWGS data92,93.

Practical considerations for imputation
Imputation requires several practical considerations. With increas-
ingly larger reference panels available, it is essential to maintain best 
practices of pre-imputation quality control, data privacy on imputa-
tion servers, choosing a reference panel and assessing imputation  
quality.

Box 2 | Haplotype-level analyses
 

Phasing enables haplotype-based associations with phenotypes. 
In contrast to genome-wide association studies (GWAS), which 
have been widely applied to screen the whole genome and test 
the association of each genetic variant individually, haplotype 
association is often used at a specific locus encompassing multiple 
variants, especially for loci with multiple distinct signals170–173. 
For example, a study of COVID-19 focused on the chr12q24.13 locus 
encoding OAS1–OAS3 antiviral proteins170. The authors found that 
the risk of hospitalization was associated with a common OAS1 
haplotype composed of two derived human-specific risk alleles, 
rs10774671-A and rs1131454-A, which they further confirmed 
functionally to provide a molecular mechanism explaining 
COVID-19 severity. These insights would not have been possible 
without population-based phasing. In addition, haplotypes can 
help to determine distinct variant effects while accounting for 
the haplotype background. For example, a study of cystic fibrosis 
patients identified rs146704092 (p.Val172Met, c.514G>A), a missense 
variant in SLC26A9, to be statistically significantly associated 
with meconium ileus after conditioning on previously identified 
associated variants174. Noticing that 84 of the 93 p.Val172Met alleles 
are on a common haplotype that is also known to be associated 
with meconium ileus, the authors tried to investigate whether this 
novel variant association could be accounted for by this haplotype. 
By controlling for the haplotype background — restricting the 
analysis to individuals with at least one copy of this haplotype — 
the authors found that the p.Val172Met allele remained associated, 
with an even greater risk for meconium ileus. Thus, the authors 
concluded that the association of p.Val172Met cannot be fully 
explained by its haplotype background, yet again demonstrating 
the role of haplotypes in phenotypic associations.

Moreover, haplotypes can help explain missing heritabilities175–177. 
A recent study on oculocutaneous albinism (OCA), a rare genetic 
disorder of pigment production with notably missing heritability, 
focused on the tyrosinase (TYR) enzyme, as alleles that reduce TYR 
function are among the most common causes of OCA175. Previous 
GWAS studies suggested that two common variants, rs1042602 and 
rs1126809, play roles in common pigmentation variation worldwide178. 
Although both variants were associated with reduction in TYR enzyme 
activities and protein levels86,179, the full effects were unknown. 
The authors demonstrated that a disease-causing haplotype, 
p.[Ser192Tyr; Arg402Gln] (cis-YQ), formed by the minor alleles of 
these two variants, is the most common disease-causing allele (19.1%) 
for type 1 OCA. Additional haplotypes are also discovered at this locus 
with potential pathogenic effects on OCA. These results showcase 
the value of phased haplotypes at the TYR locus to comprehensively 
understand disease-causing alleles for OCA175, which sets up an 
example of how phasing can help investigate genetic mechanisms 
underlying diseases and aid genetic diagnosis.

Haplotype also makes various other downstream analyses 
possible. For example, local ancestry inference requires phased 
haplotypes8,9, and it further enables analyses using local ancestry 
information12, for instance, admixture mapping11,180, GWAS and 
polygenic risk scores in admixed individuals10,181–184. In addition, a 
recent study demonstrated the potential of leveraging haplotype 
information for heritability estimation and polygenic risk score 
development, showing that haplotype-based approaches 
consistently outperformed genotype-based methods185. Future 
studies could explore the idea of combining genotype and haplotype 
information to create more accurate and transferable polygenic risk 
scores to guide clinical research and precision medicine.
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Pre-imputation quality control
Pre-imputation quality control is usually performed to remove samples 
and variants with, for example, high missing rates, variants with low allele 
frequency or uncertain strand information. Notably, pre-imputation 
quality control sometimes also considers the  Hardy–Weinberg  
equilibrium — especially in the early years of implementation — but 
it may not be appropriate to include in multi-ancestry populations 
or case–control studies, as it could remove ancestry-specific or 
disease-associated variants94–96. Pre-imputation quality control also 
includes allele check and strand flip, with caveats for palindromic SNPs 
(or ambiguous SNPs, with alleles A/T or C/G) as their strand information 
is not trivial and is usually determined by allele frequency compared 
with a certain reference panel.

Imputation servers and data privacy
Imputation of human genomes benefits from large-scale reference 
panels, which are almost impossible to make publicly available owing to 
privacy concerns and their huge sizes. Given this limitation, researchers 
have developed imputation servers such as the Michigan Imputation 
Server, where array genotype data are uploaded for initial quality con-
trol, followed by prephasing and imputation with various user-specified 
controlled-access reference panels that remain secure on the server36 
(Fig. 3a). Imputation servers are exemplary in promoting and accelerat-
ing broader usage of reference panels without requiring the researcher 
to access the individual genotypes within the panels. With open-source 
code, other imputation servers have also been developed to enable 
access to specific reference panels, including the TOPMed Imputation 

Server (for the TOPMed reference panel)34, NBDC-DDBJ Imputation 
Server (for Japanese Genotype–Phenotype Archive data)97 and Taiwan 
Biobank Imputation Server (for the Taiwan Biobank reference panel)35, 
all which provide different ancestry compositions (Table 2).

Some studies have raised privacy concerns for individuals contrib-
uting their genotypes to reference panels that are supposedly secure 
behind the ‘walls’ of imputation servers, as these reference haplotypes 
may potentially be reconstructed from artificially designed target 
haplotypes98,99. Recently, a resampling-based approach for sharing 
reference panels was proposed trying to address the issue100, but the 
reduced imputation accuracy in diverse populations has not been com-
prehensively evaluated. We note that it is not trivial to reconstruct hap-
lotypes in reference panels behind imputation servers, which requires 
the development of adversarial algorithms99; thus, we strongly urge 
researchers to use imputation servers and reference panels responsibly, 
without trying to break behind the walls. In parallel, we also encourage 
developers of imputation servers to impose stronger data protection.

Beyond privacy concerns, current imputation servers have other 
limitations that warrant future improvements. First, owing to the Gen-
eral Data Protection Regulation restrictions from the European Union 
(EU), EU-based researchers cannot upload their data to non-EU-based 
imputation servers. Consequently, the Helmholtz Munich Imputation 
Server was developed to host genotype data from EU-based research-
ers, but it has a limited set of reference panels that constrains its use101. 
To overcome these issues, stakeholders should agree to broaden global 
usage of imputation servers and reference panels. Second, the maxi-
mum sample sizes allowed by imputation servers are limited (for exam-
ple, 110,000 for Michigan Imputation Server and 25,000 for TOPMed 
Imputation Server). A tool to merge different batches of imputed data 
was developed as a solution102, but we anticipate imputation servers will 
have higher capacities as computational power increases in the future. 
Third, most — if not all — imputation servers were developed only for 
genotype-based imputation, without supporting ulcWGS imputation 
for ancient genomes. Future efforts may consider accommodation of 
ulcWGS data on imputation servers.

Reference panels
Imputation quality depends highly on reference panels, which may 
surpass the impact of different imputation methods. When imputa-
tion methods were first introduced, researchers could use the single 
HapMap reference panel103. Now, imputation servers have enabled 
public access to a wide compendium of restricted reference panels, 
which requires researchers to decide which reference panel to use. 
Notably, reference panels are often linked to a specific imputation 
method (Table 2); for example, many imputation servers adapted from 
the Michigan Imputation Sever typically implement Eagle2 for phasing 
and Minimac4 for imputation. As such, choice of reference panel is 
occasionally prioritized over imputation method, as the former greatly 
impacts imputation quality and there is minimal difference between 
imputation methods.

Studies have demonstrated that cosmopolitan reference panels 
consisting of multiple populations or panels better matching genetic 
ancestry of target individuals perform better than panels based on a sin-
gle continental ancestry population75,104,105. For example, the TOPMed 
reference panel has demonstrated improved imputation quality and 
facilitated novel association discoveries in African American and His-
panic or Latino populations17,106. Furthermore, many recently con-
structed population-specific panels have proved beneficial especially 
in the context of low-frequency and rare variants107–110. In addition, 

Box 3 | Framework of imputation methods
 

Minimac413 adopts the positional Burrows–Wheeler transform 
(PBWT)58 for efficient haplotype representation, which allows 
rapid search and match between target and reference haplotype 
segments. It collapses reference sequences matched at genotyped 
positions within chromosome chunks as hidden states, compared 
with all the individual-level haplotypes in its earlier versions, which 
greatly improves computational efficiency.

Beagle514 constructs a fixed number of target-specific 
composite reference haplotypes with a sampling-based approach, 
where each marker window (imputation unit) is divided into 
consecutive, fixed-length and non-overlapping intervals to 
ensure the entire marker window will be covered while facilitating 
parallel computing. It also develops a new file format (bref3) to 
construct a compact haplotype reference graph, which reduces 
the computation time required to read in large reference panels. 
Notably, Beagle5 is the only method that directly supports 
imputation of multi-allelic variants, without requiring them to be 
split into multiple biallelic records.

IMPUTE515, similar to Minimac4, also applies PBWT58 for efficient 
long-range haplotype matching. It selects target-specific hidden 
states by identifying a subset of best-matching haplotypes that 
share long identical by state segments with the target. In addition, 
it also develops a new reference file format (imp5) with index 
incorporated, which enables quick imputation of a specific genome 
region. Notably, IMPUTE5, demonstrated by its developers, exhibits 
sublinear scaling with reference panel sample size, outperforming 
Minimac4 and Beagle5 in terms of computational speed.
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case cohorts, where disease-causing allele frequencies differ from 
general populations, can also benefit from cohort-specific panels 
at disease-causing genes43,111. However, owing to the sample size dif-
ference between the general population and cohort-specific panels, 
the former still perform better for the vast majority of the variants43. 
Therefore, it is valuable to effectively combine imputation results 
from multiple reference panels, also known as meta-imputation and 
enabled by MetaMinimac112.

MetaMinimac112 combines imputation results from two or more 
reference panels as a weighted average of the estimated allele counts 
from each result set (Fig. 3b). Weights are determined by the empirical 
performance of each panel using leave-one-out imputation at geno-
typed markers, and are region and individual specific, estimated with 
an HMM. Results have shown that such meta-imputation can improve 
imputation quality for non-European populations, especially for 
low-frequency and rare variants112–114, consistent with the variant cat-
egories that benefit most from population-specific panels. However, 
one study also reported meta-imputation failed to improve imputation 
quality for some populations48, but the authors’ evaluation was based 
only on estimated imputation quality, which may differ dramatically 
from true imputation quality40,41. Looking ahead, more systematic eval-
uations are needed based on true imputation quality calculated from 
gold standard genotypes derived from genotyping or sequencing data.

Imputation quality
Although imputation approaches are powerful to expand genome 
coverage and facilitate various genomic analyses115–117, they have 
deficiencies that must be assessed through imputation quality. For 
example, increasingly large reference panels are composed mostly 
(>90%) of rare variants34, which are harder to impute15,45,118. To prevent 
these poorly imputed variants from hindering downstream GWAS 
and polygenic risk score calculations119–121, imputation quality must 

be carefully assessed, and poorly imputed markers are subsequently 
filtered out. The gold standard approach to evaluate imputation quality 
of an untyped marker is to calculate the squared Pearson correlation 
(true R2) between imputed dosages and the truth across all individuals. 
It can be calculated at both the genotype and haplotype levels (as in 
MaCH22 and Minimac13,78, respectively), but requiring true genotypes or 
haplotypes makes true imputation quality unavailable in real applica-
tions to impute unknown genotypes. As such, Minimac4 provides the 
true imputation quality only for genotyped variants, where imputa-
tion is performed by masking genotyped variants and treating them 
as untyped.

Given the limited availability of true imputation quality, various 
estimated imputation quality metrics have been proposed and usu-
ally are directly generated from imputation software. Specifically, 
Minimac4 reports haplotype-level estimated R2 (Rsq), defined as the 
empirical variance of haplotype dosage from imputed data divided by 
the expected variance given the estimated allele frequency13,78. DR2 in 
Beagle5 takes a similar approach to Rsq in Minimac4 but it explicitly 
models posterior variance of genotypes given the data77. IMPUTE5, 
instead of using estimated R2, calculates estimated statistical infor-
mation (termed INFO) of allele frequency in the imputed and the true 
genotypes. The above three metrics are proven to be equivalent under 
Hardy–Weinberg equilibrium76,77 and are reliable to estimate imputa-
tion quality for common variants. However, they are shown to be less 
accurate for low-frequency and rare variants40,41,77; therefore, relying 
solely on estimated quality metrics to assess imputation accuracy may 
be inappropriate when comparing imputation strategies or reference 
panels, especially for rarer variants.

Recent studies have proposed new quality metrics leveraging 
machine learning techniques, namely MagicalRsq40 and MagicalRsq-X41. 
MagicalRsq uses imputation summary statistics (Rsq and MAF) along 
with external population genetics data to train an XGBoost model, 
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Fig. 3 | Imputation servers, reference panels and meta-imputation. a, An 
illustration of the imputation workflow starting from array genotype data. 
Quality control (QC) is first performed, followed by prephasing and imputation. 
All these steps are integrated in major imputation servers, where users can select 
reference panels for prephasing and imputation. After obtaining the imputed 
data, post-imputation QC is performed to remove poorly imputed variants for 

downstream analyses. b, An illustration of two-way meta-imputation. Starting 
from the same array genotype data, two imputations with two different reference 
panels are separately performed. Differences manifest between the two results,  
for example, at the second and the last markers in the illustration. Meta-imputation 
is performed where the two separately imputed results are combined to generate 
a consensus or meta-imputed results.
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treating each variant as an observation. It incorporates additional 
genotypes from a subset of study samples or from variants not used in 
the imputation process. Such models are shown to be better calibrated 
compared with the original Rsq, particularly for lower-frequency vari-
ants. MagicalRsq-X extends its predecessor by borrowing information 
from external cohorts and directly applying models pretrained using 
these external cohorts. However, the calibration would fail if model 
training cohorts were genetically distant from target cohort. Future 
studies can further consider incorporating or accounting for genetic 
dissimilarities when training and applying models to more effectively 
improve imputation quality calibration.

Phasing and imputation in the long-read era
Methods for phasing and imputation have evolved alongside 
next-generation sequencing, which is heading towards the long-read 
era. These technologies produce long reads with an average length 
of 10 kb (for both Oxford Nanopore Platform and PacBio technolo-
gies)100,122–124 and with the longest read reaching 4 Mb (ref. 125), enabling 
more reliable read-based phasing (discussed in brief below and more 
comprehensively in refs. 126–128). Long reads can also better detect SVs 
that cannot be called effectively with short-read sequencing, making 
imputation of SVs possible52.

Read-based phasing
Read-based phasing, or haplotype assembly, addresses the need for 
phasing directly from sequencing reads. It falls into a different category 
from the population-based phasing discussed above, where phase is 
assessed through reads capturing multiple variant sites. For exam-
ple, Oxford Nanopore Technologies-based workflows phased >99% 
of heterozygous SNPs in the APOE locus, a hotspot for Alzheimer’s 
disease risk haplotypes, using as few as 60 reads129. Similarly, Hi-C 
data integrated with PacBio assemblies via FALCON-Phase130 extended 
phase blocks to the scale of Mb in human and cow genomes with 
97% accuracy. As another example, long-read sequencing revealed 
haplotype-specific mutation biases in non-small-cell lung cancer, where 
chromothripsis-like rearrangements occurred preferentially on one 
parental chromosome in EGFR-mutant tumours131, demonstrating 
the use of long-read sequencing in dissecting somatic evolution and 
allele-specific epigenetic regulation131.

Read-based phasing can be performed using short-read 
sequencing data, but they usually provide insufficient information 

for effective haplotype assembly126. An early method HapCUT132 was 
based on short-read sequencing data using max-cuts algorithms on 
fragment metrices to minimize conflicts. The authors updated the 
method to HapCUT2 to incorporate long-read sequencing data133. 
Another method, WhatsHap134, applied dynamic programming to 
optimize the minimum error correction metric, with a parallel imple-
mentation called PWhatsHap135. More recently, many different hap-
lotype assembly methods have been developed136–141, including some 
methods borrowing information from other data types, for exam-
ple, RNA sequencing142,143, methylation144,145, Hi-C130,146 and single-cell 
strand-seq147. Note that some studies have combined both read-based 
phasing and genotype-based phasing to further improve phasing 
accuracy148,149, but more systematic evaluations are warranted to com-
pare the performance between these two types of phasing method, or 
to assess how to maximize information provided by reads (for example, 
read-based phasing versus genotype-based phasing with SAPPHIRE for 
phasing corrections).

Imputation of SVs
Long-read sequencing technologies also enable the comprehensive 
study of SVs, which have remained incompletely resolved owing to 
limitations of short-read sequencing150. A recent study performed 
nanopore long-read sequencing for 1,019 individuals from various pop-
ulations in the 1000 Genomes Project150 and focused on the analyses 
of SVs, providing valuable resources to the community. Another study 
constructed an imputation reference panel for SVs and imputed SVs 
for individuals in UK Biobank52. They further performed GWAS of SVs, 
which identified thousands of genome-wide significant associations, 
including novel signals that were independent of SNP associations. This 
pioneering study indicates a promising future direction of imputing 
SVs leveraging long-read sequencing data in diverse populations, 
which will help uncover biological mechanisms after the landscape 
of different types of genome variant becomes available. We note that 
SVs powered by long-read sequencing have also led to novel genome 
representations using graphics (for example, pangenomes)151, which 
have the potential to serve as a standard format of reference panels for 
phasing and imputation in the future. Complex SVs, including highly 
polymorphic multi-allelic variants, pose substantial challenges for 
accurate phasing and imputation; thus, novel methodology and com-
putational tools are needed to facilitate phasing and imputation capa-
ble of incorporating long and complex SVs. We also anticipate several 

Table 2 | Reference panel characteristics

Reference panel Number of samples Number of variants Population Continental origins Available imputation servers

HRC (version r1.1 2016) 32,470 39,635,008 European EUR MIS, Sanger, HMIS

1000 G Phase 3 (version 5) 2,504 49,143,605 Multiple EUR, AFR, NAM, SAM, 
EAS, SAS

MIS, Sanger, HMIS, TWB, Afrigen-D

TOPMed r3 133,597 445,600,184 Multiple EUR, AFR, NAM, SAM, 
EAS, SAS

TOPMed

UK10K 3,781 45,492,035 European EUR Sanger

GAsP 1,654 21,494,814 Asian EAS, SAS MIS

CAAPA 883 31,163,897 African American EUR, AFR, NAM MIS

Taiwan Biobank 1.5k ~1,500 NA East Asian EAS TWB

H3African v6 4,447 130,028,596 Multiple (~50% African) AFR, EUR Afrigen-D

AFR, African; EAS, East Asian; EUR, European; HMIS, Helmholtz Munich Imputation Server; NA, not available; NAM, North American; SAM, South American; SAS, South Asian; TWB, Taiwan 
Biobank Imputation Server.
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other future advances in SV imputation, including meta-imputation 
combining SV reference panels with existing panels, post-imputation 
quality evaluation and recalibration, and evaluations of various study 
design options.

Future perspectives
It is unlikely that completely novel statistical methods will replace 
the long-established PAC framework for phasing and imputation of 
short-read sequencing data, but we believe there is potential for algo-
rithmic novelty in the future, especially regarding artificial intelligence, 
reference panels and long-read sequencing.

Artificial intelligence
Phasing and imputation is poised to benefit from the rapidly evolv-
ing artificial intelligence models152–154. For example, future stud-
ies may attempt to learn haplotype patterns in ‘chunks’ from large 
reference panels and apply such chunk-specific models for phasing 
and imputation in target individuals. Moreover, how artificial intel-
ligence agents155,156 may help with phasing and genotype imputation, 
especially some tedious but essential data processing steps, is also an 
interesting future direction that warrants comprehensive development 
and evaluation. Methods incorporating various deep learning tech-
niques have been developed, such as accurate data-driven imputation 
technique (ADDIT)157, sparse convolutional denoising autoencoder 
(SCDA)158, imputation based on bidirectional recurrent neural net-
work (RNN-IMP)79,159, recurrent neural networks integrating with an 
additional discriminator network (GRUD)160 and split-transformer with 
integrated convolutions for genotype imputation (STICI)161. However, 
these deep learning methods have not been widely evaluated. Impartial 
and comprehensive evaluations are warranted before conclusions can 
be drawn for practical utilities. In addition, these methods usually 
require large amount of data and high computational costs to train 

reliable models. Future development may focus on integrating deep 
learning techniques with traditional statistical models to leverage the 
advantages of both approaches.

Reference panels and diverse variation
We expect that imputation reference panels will continue to grow larger 
and more diverse, thus computational improvements of imputation 
methods are still needed. Importantly, some populations are still 
underrepresented in current reference panels, for example, American 
Indians162. Future efforts are needed to include more comprehensive 
representations of global populations in reference panels. In addi-
tion, reference panels specifically for non-SNP variants are emerging, 
including copy number variants49, tandem repeats50,51 and general SVs52. 
The increasing number of rare variants and the potential of imput-
ing non-SNP variants also present challenges of how to distinguish 
well-imputed from poorly imputed variants. Our prior study among 
individuals with cystic fibrosis showed that imputation quality for 
common SNPs and insertions or deletions (indels) with MAF ≥1% had 
no substantial differences (relative difference ~2% in terms of true R2), 
but rare (MAF <1%) indels had ~35% lower median true R2 compared 
with SNPs43. We note that these results may be biased towards small 
indels, and future studies are warranted to evaluate imputation qual-
ity for larger and more complex SVs, highlighting the need for better 
calibrated imputation quality estimate.

Long-read sequencing
With the development of long-read sequencing technologies, many 
haplotype assembly methods have been proposed. Although long-read 
sequencing has attractive features compared with short-read sequenc-
ing, especially for resolving SVs, the available sample size is still orders 
of magnitude smaller owing to its high cost. Therefore, future method 
development may focus on combining short- and long-read sequencing 

Glossary

Adversrial algorithms
Algorithms to intentionally ‘attack’ a 
computational system or algorithm to 
assess its robustness.

Emission probabilities
Probabilities of observed data 
conditional on a particular hidden state 
in an HMM.

Expectation-maximization
An iterative method to find local 
maximum likelihood estimate of 
parameters in a statistical model, where 
the model depends on unobserved 
latent variables.

Greedy algorithm
An algorithm that follows the 
problem-solving heuristic of making the 
locally optimal choice at each stage.

Haplotype
A physical group of alleles (across 
multiple genetic variants) on a single 
chromosome that tends to be inherited 
together. For example, at two loci 
with alleles A/a and B/b, there are four 
possible haplotypes: AB, Ab, aB and ab.

Hardy–Weinberg equilibrium
A theory specifying the relationship 
between allele and genotype 
frequencies in a population, attained 
within one generation under minimal 
conditions that fit the human 
population.

Hidden Markov models
(HMM). A statistical model to describe 
systems where the states of the system 
are not directly observed (hidden), but 
their behaviours can be characterized 
through a sequence of observed data.

Hidden states
Unobserved states in an HMM.

Identity-by-descent
(IBD). DNA segments shared between 
two or more chromosomes because 
they were inherited from a common 
ancestor without recombination.

Linkage disequilibrium
The non-random association of alleles 
at different loci on a chromosome, 
that is, correlations among alleles 
of two genetic variants, usually 
represented in metrics such as 
D-prime and R2.

Minor allele frequency
(MAF). The frequency at which the less 
common allele occurs in a population.

Probability-based Gibbs 
sampling
An algorithm for sampling from a 
specified multivariate probability 
distribution when it is difficult to directly 
sampling from the joint distribution. 
Instead, sampling from the conditional 
distribution is more practical. It is a 
type of Markov chain Monte Carlo 
method.

Transition probabilities
Probabilities of moving from one state 
to another in an HMM.
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reference panels or leveraging long-read sequencing data for error 
correction in phasing and imputation derived from short-read refer-
ence panels. When long-read sequencing costs become feasible for 
large sample sizes, imputation reference panels based on long-read 
sequencing data may take place of the current practice, especially 
given the recent release of a draft human pangenome reference151. In 
addition, compared with short-read data, long-read sequencing bet-
ter and more comprehensively captures SVs and multi-allelic variants, 
which are much more complicated than biallelic SNPs. Traditional 
genotype-based phasing and imputation methods that leverage PAC 
framework may not be able to handle these more complex types of 
genetic variant. Novel methodologies and computational pipelines 
tailored for these data will be in high demand and probably become 
state of the art in the future.

Long-read sequencing technologies also bring opportunities 
for more study design options. For example, given a fixed amount 
of funding, researchers may choose to perform varying mixtures of 
long-read sequencing, short-read sequencing and array genotyping 
followed by imputation, within a study cohort. Previous work studied 
mixed designs, but without long-read sequencing data, and concluded 
that the best design strategy depends heavily on the study objectives 
with many aspects to consider45,80,163,164. To the best of our knowledge, 
there are no studies evaluating different study design strategies involv-
ing long-read sequencing or long-read sequencing-based imputa-
tion, which should be possible in the future with more data becoming 
available. Important evaluation metrics include the ability to directly 
capture (either by sequencing or array genotyping) variants of vari-
ous types (for example, SNPs, simple indels and more complex SVs; 
biallelic versus multi-allelic variants) at varying MAFs, and the ability 
to impute variants when not directly measured. Practically, for exam-
ple, it would be valuable to update tools provided by our previous 
work, including ABCD165 (where we estimated power to detect and call 
genotypes at SNPs across the entire MAF spectrum) and Imputability 
Database166 (where we estimated the imputation quality of each variant 
in the reference panel with different genotyping arrays across various 
populations).

Conclusions
Since their introduction two decades ago, haplotype phasing and geno-
type imputation have become standard practices in various genomic 
analyses. As the methods are still based on the PAC framework, recent 
method developments for population-level phasing and imputation 
have focused primarily on computational improvements to accommo-
date the rapidly growing size of samples and variants. These advances 
include PBWT for efficient haplotype representation, novel approaches 
for rare variant phasing, design of new reference file format, and vari-
ous practical considerations of phasing and imputation. Along with the 
increasing scale of population genomic datasets and complete genome 
assemblies from long-read sequencing, the field is rapidly evolving with 
technological advances presenting various exciting new opportunities 
for the continued development of phasing and imputation.
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