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The computational design of protein-based binders presents unique 
opportunities to access ‘undruggable’ targets, but effective binder design 
often relies on stable three-dimensional structures or structure-influenced 
latent spaces. Here we introduce PepMLM, a target sequence-conditioned 
designer of de novo linear peptide binders. Using a masking strategy that 
positions cognate peptide sequences at the C terminus of target protein 
sequences, PepMLM finetunes the ESM-2 protein language model to 
fully reconstruct the binder region, achieving low perplexities matching 
or improving upon validated peptide–protein sequence pairs. After 
successful in silico benchmarking with AlphaFold-based docking, we 
experimentally validate the efficacy of PepMLM through both binding 
and degradation assays. PepMLM-derived peptides demonstrate 
sequence-specific binding to cancer and reproductive targets, including 
NCAM1 and AMHR2, and enable targeted degradation of proteins across 
diverse disease contexts, from Huntington’s disease to live viral infections. 
Altogether, PepMLM enables the design of candidate binders to any target 
protein, without requiring structural input, facilitating broad applications 
in therapeutic development.

The development of therapeutics largely relies on the ability to design 
small-molecule-based or protein-based binders to pathogenic tar-
get proteins of interest1. These binders can be used either as inhibi-
tors or as functional recruiters of effector enzymes2. For example, 
proteolysis-targeting chimeras (PROTACs) or molecular glues are 
heterobifunctional small molecules that bind and recruit endog-
enous E3 ubiquitin ligases for targeted protein degradation (TPD)3,4. 
Still, these small-molecule-based methods rely on the existence of 
accessible cryptic or canonical binding sites, which are not present on 

classically ‘undruggable’ intracellular proteins5,6. With the advent of 
deep-learning-based structure prediction tools such as AlphaFold2 and 
AlphaFold3 (refs. 7,8), combined with generative modeling1, algorithms 
such as RFdiffusion and MASIF-Seed enable researchers to conduct 
de novo protein binder design from target structure alone9,10. None-
theless, much of the undruggable proteome, including dysregulated 
proteins such as transcription factors and fusion oncoproteins, are 
conformationally disordered, thus biasing design to a small subset of 
disease-related proteins1,6.
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Results
PepMLM leverages span masking via ESM-2 embeddings for 
de novo design of target-binding peptides
We trained PepMLM using existing peptide–protein binding data 
sourced from the recent PepNN training set and the gold standard Pro-
pedia dataset24,25. We subjected our curated dataset to a filtration pro-
cess based on the lengths of the binder and target protein sequences, 
which were confined to 50 and 500, respectively. To remove redundan-
cies, we applied MMSeq2 clustering with a threshold at 80% on target 
protein sequences and removed entries that are in the same cluster 
and have the same binder sequence. The final dataset was split into 
10,000 samples for training and 203 samples for testing26. Each entry 
in the dataset comprised a concatenated protein and binder sequence. 
During the training phase, we masked the entire peptide sequence, 
tasking the model to reconstruct them via the ESM-2-650M model17. The 
discrepancy between the ground truth binder and the reconstructed 
binder induces a cross-entropy loss, thereby forcing parameter updates 
via gradient descent. After finetuning, we generate peptide binders of 
specific lengths by providing the model with a target protein sequence 
and a user-defined number of mask tokens, as illustrated in Fig. 1a. Final 
settings and hyperparameters used to train our model are presented in 
Supplementary Table 1. We used pseudo-perplexity (PPL) of PepMLM to 
score binders given target protein sequence (Methods). Two decoding 
strategies were implemented: a default greedy decoding approach17 
that selects the highest probability token at each site and a top-k sam-
pling method that chooses from among the k most probable tokens to 
generate diverse peptide binders. After testing various k values (2–20) 
and analyzing the tradeoff between sequence diversity and model 
confidence through perplexity measurements, we selected k = 3 as 
the optimal value for balancing these factors (Supplementary Fig. 1).

To substantiate the efficacy of the designed peptides, we con-
ducted a comprehensive series of computational benchmarks with 
test set peptide–target pairs. The total 203 test set target proteins 
were used to generate one peptide binder each in one shot, employing 
pretrained ESM-2 embeddings and PepMLM with additional randomly 
designed binders. All three groups (PepMLM, ESM-2 and Random) use 
the same length as the ground truth test binder for each target protein. 
Subsequently, the PPL of the binder region was computed for four 
groups of target protein–binder pairs. For a majority of the test set, 
known binders exhibited a reasonable perplexity range, with only a few 
outliers (those with a perplexity >40), validating the effective ability of 
PepMLM to model them accurately (Fig. 1b and Supplementary Table 2). 
Our distribution analysis revealed that PepMLM closely mirrors the 
low PPL region of real binders, a deviation from the distribution shifts 
observed with the original ESM-2 model alone and with randomly 
designed binders, indicating that PepMLM can distinguish binders 
from non-binders especially for random binders by PPL scores (Fig. 1c).

Over the past few years, deep learning has revolutionized natural 
language processing (NLP), particularly through the implementation 
of the attention mechanism11. This foundational advancement has 
transcended the boundaries of natural language analysis, finding 
applications in the modeling of other languages, such as proteins, 
which are fundamentally sequences of amino acids12. Recently, sev-
eral protein language models (pLMs) trained on distinct transformer 
architectures, such as ProtT5, ProGen2, ProtGPT2 and the ESM series, 
have accurately captured critical physicochemical properties of 
proteins13–16. Notably, ESM-2 currently stands as a state-of-the-art 
model in the realm of protein sequence representation, essentially 
functioning as an encoder-only model that discerns co-evolutionary 
patterns among protein sequences via a masked language modeling 
(MLM) training task17,18. These models have been extended to powerful 
applications, including antibody design, the creation of novel proteins 
and structure prediction, offering a streamlined approach to embed-
ding useful protein information14,15,17,18. Recently, our laboratory has 
leveraged the expressivity of pLMs to both generate and prioritize 
effective peptidic binder motifs to targets of interest, enabling design 
of peptide-guided protein degraders19,20 that are modeled after the 
ubiquibody (uAb) architecture developed by Portnoff et al.21,22. As 
such, uAbs now represent a programmable, CRISPR-like approach 
for TPD. Our early models, Cut&CLIP and SaLT&PepPr, rely on the 
existence of interacting partner sequences as scaffolds for peptide 
design19,23. Most recently, our PepPrCLIP model generates de novo pep-
tides by first sampling the ESM-2 latent space for naturalistic peptide 
candidates and then screening these candidates through a contrastive 
model to determine target sequence specificity20. However, a purely 
de novo, target sequence-conditioned binder design algorithm has 
yet to be developed.

To achieve this goal, we introduce PepMLM, a Peptide binder 
design algorithm via Masked Language Modeling, built upon the 
foundations of ESM-2 (ref. 17). PepMLM employs a masking strategy 
that uniquely positions the entire peptide binder sequence at the ter-
minus of target protein sequences, compelling ESM-2 to reconstruct 
the entire binding region (Fig. 1a). PepMLM-derived linear peptides 
achieve low perplexities, matching or improving upon validated 
peptide–protein sequence pairs in the test dataset; outperform the 
state-of-the-art RFdiffusion model for peptide design on structured 
targets in silico9; and experimentally exhibit potent and specific bind-
ing to disease-relevant targets and degradation of difficult-to-drug 
drivers of Huntington’s disease and emergent viral phosphoproteins 
when incorporated into the uAb architecture. Overall, by focusing 
on the complete reconstruction of peptide regions, PepMLM serves 
as a completely sequence-based, target-conditioned de novo binder 
design tool, paving the way for the development of more effective, 
therapeutic binders to conformationally diverse proteins of interest.

Fig. 1 | Overview and evaluation of the PepMLM model. a, The architecture of 
the PepMLM model. Based on the finetuning of ESM-2, the model incorporates 
the target protein sequence along with a masked binder region during the 
training phase. During the generation phase, the model can accept target protein 
sequences and mask tokens to facilitate the creation of peptides of specified 
lengths. b, Perplexity distribution comparison. The perplexity values were 
calculated for test and designed peptides, encompassing the target proteins in 
the test set. c, The density distribution visualization of the log perplexity values 
for target–peptide pairs, encompassing test peptides, PepMLM-650M-designed 
peptides, ESM-2-650M-designed peptides and random peptides.  
d, In silico hit rate assessment of RFdiffusion (left) and PepMLM (right). Using 
AlphaFold-Multimer, ipTM scores were computed for both the designed and 
test peptides in conjunction with the target protein sequence. The entries are 
organized in accordance with the ipTM scores attributed to the test set peptides. 
The hit rate is characterized by the designed peptides exhibiting ipTM scores ≥ 
those of the test peptides. e, Binding specificity analysis through permutation 
tests. The distribution of PPL scores for matched target–binder pairs (blue) is 

compared with randomly shuffled mismatched pairs (red). Each target’s binder 
was shuffled 100 times to generate the mismatched distribution. Statistical 
significance was determined using t-test (P < 0.001). f, Structural comparison of 
computationally designed and experimental peptide binders in complex with 
their target proteins. Target proteins (gray) are shown in complex with PepMLM-
designed binders (red) and experimental test binders (blue), with contact 
residues highlighted in corresponding colors. Top, mouse H-2Kb MHC complex 
(PDB ID: 2OI9) with designed peptide PSLGSVPYV (ipTM: 0.9) and test peptide 
QLSPFPFDL (ipTM: 0.9). Bottom, human tyrosine kinase complex (PDB ID: 1LCK) 
with designed peptide PPAEEIPP (ipTM: 0.82) and test peptide EGQQPQPA 
(ipTM: 0.68). g, Frequency distribution of individual amino acids among peptide 
binders (n = 203), comparing the test set (blue), PepMLM-designed sequences 
(red) and ESM2-650M-designed sequences (green). h, Amino-acid-specific 
generation distribution at contact positions (8-Å threshold). The heatmap shows 
the percentage of designed amino acids (y axis) given each amino acid in test 
binders (x axis).
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To further understand PPL score, we co-folded the test bind-
ers with their respective target proteins using AlphaFold-Multimer, 
which has been proven effective at predicting peptide–protein 
complexes27,28. The predicted local distance difference test (pLDDT) 
and interface-predicted template modeling (ipTM) scores, verified 
metrics within AlphaFold2 (ref. 7), function as critical indicators of 
the structural integrity and the potential interface binding affinity 
of the peptide–protein complex, respectively, providing an external 
quantitative assessment of our generation. PPL, our confidence metric, 
showed significant agreement with folding scores, as the extracted 
ipTM and pLDDT values from our benchmarking indicated a statisti-
cally significant negative correlation (P < 0.01) with PepMLM PPL. 
This demonstrates that our model can reflect binding interactions in 
a zero-shot manner via PPL while validating its reliability in prioritizing 
stable target-binding molecules (Supplementary Fig. 2).

To evaluate our generation quality, we compared PepMLM with 
RFdiffusion by generating one binder per target and performing struc-
tural prediction using AlphaFold-Multimer. We used the ipTM scores 
of test binders as reference points, defining a successful hit when a 
designed binder achieved a higher ipTM score than its correspond-
ing test binder, indicating AlphaFold’s prediction of stronger binding 
affinity. Our analysis revealed hit rates of 38% for PepMLM and 29% 
for RFdiffusion (Fig. 1d). When applying more stringent criteria with 
plDDT scores greater than 0.8, PepMLM and RFdiffusion achieved hit 
rates of 49% and 34%, respectively (Supplementary Fig. 3). These results 
demonstrate the superior performance of PepMLM in peptide binder 
design, even for structured targets, potentially reducing the need for 
extensive experimental screening.

To investigate binding specificity of designed binders, we con-
ducted a permutation test across 203 target–binder pairs using the PPL 
metric. For each target, we performed 100 random binder shuffles and 
computed PPL scores for these mismatched pairs. Statistical analysis 
using t-tests revealed significant differences (P < 0.001) between the 
PPL distributions of matched and mismatched pairs (Fig. 1e). The con-
sistently higher PPL values observed in shuffled pairs indicate that our 
designed binders exhibit target specificity, as disrupting the intended 
target–binder pairing leads to predicted lower binding affinities.

We showcase two exemplary binder designs for mouse H-2Kb 
major histocompatibility complex (MHC) (Protein Data Bank (PDB) 
ID: 2OI9) and human tyrosine kinase (PDB ID: 1LCK) from our test set 
with detailed contact analysis (Fig. 1f). Analysis of the H-2Kb MHC (PDB 
ID: 2OI9) revealed that, despite high sequence identity (0.9) with the 
training set, PepMLM designed a distinct peptide (PSLGSVPYV) from 
the test binder (QLSPFPFDL) while maintaining equivalent binding 
quality (ipTM: 0.9). The designed peptide engages similar MHC bind-
ing residues, with terminal hydrophobic residues (proline and valine) 
serving as anchor points, suggesting similar biochemical properties to 
the experimental binder. In contrast, the tyrosine kinase complex (PDB 
ID: 1LCK) exhibited low sequence identity (0.26) with the training set, 
providing a stringent test of PepMLM’s capacity to design binders for 
novel targets. Here, the PepMLM-designed peptide (PPAEEIPP, ipTM: 
0.82) exhibited more confident interaction compared to the test binder 
(EGQQPQPA, ipTM: 0.68). AlphaFold predictions demonstrated that 
both designed and experimental binders adopt similar spatial configu-
rations and binding modes. Further analysis revealed that our designed 
peptide binders, despite having different sequences from the test bind-
ers, typically targeted the same binding pockets and displayed similar 
structural conformations, validating our language-model-based design 
approach (Supplementary Fig. 4 and Supplementary Table 3). In cases 
with lower predicted binding confidence scores, the designed binders 
exhibited distinct binding modes that appeared more optimal accord-
ing to AlphaFold-Multimer predictions. However, it remains chal-
lenging to definitively ascertain whether our binders exhibit unique 
binding modes or if these observations are attributable to limitations 
in AlphaFold-based modeling8.

We further analyzed amino-acid-level patterns by generating 
100 additional binders using both ESM-2 and PepMLM on the test set. 
At the amino acid composition level, PepMLM-designed sequences 
closely mirror the amino acid distribution of test binders, whereas 
ESM-2 exhibits strong biases toward serine (S), leucine (L) and ran-
domly selected amino acids (X) (Fig. 1g), suggesting that PepMLM 
better captures the natural amino acid preferences in protein–pep-
tide interactions after finetuning. More importantly, we conducted 
a detailed amino acids substitution analysis of generation, with par-
ticular attention to contact positions (defined using an 8-Å threshold). 
For each position in a test binder, we analyzed the amino acid types 
across corresponding positions in 100 designed binders. Overall, we 
observed 69.2% and 68.4% amino-acid-specific variations across all 
positions and contact positions, respectively. The diagonal elements 
of our generation matrix reveal that our model maintains a substantial 
probability of preserving the original amino acids in both contact and 
non-contact positions (Fig. 1h and Supplementary Fig. 5), indicating 
the ability of the mode to learn contextually appropriate amino acid 
choices given the target sequence. However, the model also demon-
strates great versatility in generating diverse alternative amino acids. 
Within contact positions, we observed biochemically sensible gen-
eration patterns, including exchanges between hydrophobic residues 
(for example, valine to leucine at 13% and isoleucine to leucine at 17%) 
and similarly charged residues (lysine to arginine at 11% and aspartate 
to glutamate at 7.8%). Notably, positions containing cysteine exhibit 
highly conserved substitution patterns in our generation, potentially 
reflecting the critical role of cysteine in disulfide bond formation 
and structural stability. Together, these amino-acid-level analyses 
demonstrate PepMLM’s sophisticated understanding of biochemical 
properties and structural constraints in protein–peptide interactions 
at a fine-grained amino acid level.

Finally, to evaluate the generalizability of PepMLM beyond its 
training distribution, we analyzed the relationship between test target 
similarity to the training set and model performance (Supplementary 
Fig. 6). Notably, PepMLM consistently designed binders with low per-
plexity and high predicted binding affinity (ipTM), even for targets with 
less than 30% sequence identity, indicating that model performance 
does not rely on high homology and generalizes well to unseen protein 
substrates, motivating experimental characterization on diverse, 
disease-related targets.

PepMLM-derived peptides potently bind disease-implicated 
receptors in vitro
Our first goal was to establish the capacity of PepMLM to generate 
potent but specific peptide binders experimentally. To do this, we 
focused on two disease-related targets: neural cell adhesion molecule 1 
(NCAM1), a key marker of acute myeloid leukemia29, and anti-Müllerian 
hormone type 2 receptor (AMHR2), a critical regulator of polycystic 
ovarian syndrome30. For both targets, four binders, each from PepMLM 
and RFdiffusion, were preliminarily screened using an ELISA (Sup-
plementary Table 4), following which the most promising sequence 
from each algorithm (based on signal-to-noise ratio and maximum 
signal) was further characterized in triplicate. Results from initial 
screens indicate that all four PepMLM peptides for each target showed 
a binding response at concentrations as low as approximately 60 nM of 
AMHR2 or NCAM1-Fc fusions (Supplementary Fig. 8a,d). By contrast, 
RFdiffusion-generated peptides resulted in much poorer binders in 
both cases (Supplementary Fig. 8b,c). Although RFdiffusion produced 
moderate binders against NCAM1, binders generated against AMHR2 
using the relevant crystal structure (PDB ID: 7L0J; chain B) showed 
minimal binding compared to blanks and BSA controls (Supplemen-
tary Fig. 8b,e). When preliminary screens were compared directly, 
we observed notably higher success rates of PepMLM-designed pep-
tides in comparison to RFdiffusion peptides (Supplementary Fig. 8c,f).  
Further comparison of the best PepMLM and RFdiffusion binders 

http://www.nature.com/naturebiotechnology
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against NCAM1 unveiled a clear difference in sensitivity and overall 
signal throughout all concentrations of NCAM1 tested (Fig. 2a and 
Supplementary Fig. 8g). Moreover, when probing the minimal con-
centration at which pMLM_NCAM1_2 can be distinguished from BSA 
controls, we observe significantly higher absorbance at approximately 
30 nM (Fig. 2b; P = 0.0051). Notably, we show that none of the PepMLM 
peptides tested exhibited significant binding to BSA at concentrations 
up to 500 nM, that SUMO–polyglycine (polyG) constructs displayed 
no discernible difference in signal in the presence of either AMHR2 or 
NCAM1, and that use of generic IgG control as antigen yielded minimal 
signal up to 500 nM (Fig. 2a). Overall, these results corroborate our in 
silico observation that PepMLM generates promising binder candidates 
from target sequence alone with higher success rates than the current 
state-of-the-art binder design models.

PepMLM-derived uAbs degrade Huntington’s disease-related 
proteins in vitro
Having demonstrated PepMLM’s comparatively strong binder gen-
eration to RFdiffusion both in silico and in vitro, we next evaluated 
PepMLM peptides via fusion to E3 ubiquitin ligase catalytic domains 
by generating targeted uAbs to degrade pathogenic proteins in human 
cells (Fig. 3a)31. We focused our attention on Huntington’s disease, a 
monogenic dominant neurological disorder affecting more than one 
in 10,000 adults, caused primarily by an expanded CAG repeat in exon 
1 of the HTT gene32. This results in an extended polyglutamine (polyQ) 
tract, leading to formation of the aggregation-prone mutant huntingtin 
protein (mHTT)33. Recently, it was shown that genetic knockdown of 
the mismatch repair-associated MSH3 protein reduces and inhibits 
mHTT repeat expansion34,35. We, thus, sought to degrade MSH3 at the 
posttranslational level via PepMLM peptide-guided uAbs.

First, to design peptides for MSH3 degradation, we employed 
greedy decoding to determine the optimal binder length that yielded 
the lowest perplexity, followed by the generation of binders using 
top-k sampling, where k was fixed at 3 as previously described (Sup-
plementary Table 4). After cloning these peptides into our uAb back-
bone and transfecting into genomically stable RPE1 cells, staining with 
fluorescently labeled anti-MSH3 antibody was used to quantify relative 
MSH3 levels. Quantitative immunofluorescence imaging revealed that 

five of six constructs tested (MSH3_pMLM_2–6) significantly reduced 
levels of MSH3 compared to polyG controls (Fig. 3b), demonstrating 
that anti-MSH3 PepMLM peptides are capable of robust degradation 
without extensive experimental screening.

We next sought to degrade the mHTT protein itself. To do this, 
we used TruHD fibroblasts, a genomically stable line that expresses 
the mHTT protein at a clinically relevant CAG repeat length of Q43 
(ref. 36). As the line is heterozygous with both Q43/Q17 alleles, we 
designed PepMLM peptides targeting exon 1 with a polyQ repeat 
of 43. TruHD cell lines were then transfected with plasmids encod-
ing for the five optimal candidates fused to a uAb domain under 
the control of a doxycycline-inducible promoter (Supplementary 
Table 4). HTT degradation was then measured with an anti-Huntingtin 
protein-specific antibody (EPR5526) recognizing the first 100 amino 
acids of HTT, which includes the polyQ region in both the presence 
and absence of doxycycline. Subsequent western blotting revealed 
minimal degradation prior to doxycycline induction, with visible 
ablation observed only after induction (Fig. 3c,d). Notably, all five 
candidates caused significant reduction of HTT levels compared to 
polyG control degradation (Fig. 3c,d). Taken together, the significant 
degradation of both MSH3 and HTT protein demonstrates the ability 
of PepMLM to design peptides that engage diverse, disease-related 
targets in cellulo.

PepMLM-derived uAbs degrade emergent viral 
phosphoproteins
Finally, we investigated whether PepMLM-derived uAbs could induce 
degradation of critical viral target proteins. As a key target class, we 
selected the viral phosphoprotein based on its relatively high sequence 
homology among strains of the selected viruses as well as its critical 
role in viral transcription and genome replication. Phosphoprotein 
sequences were selected for two emerging deadly viruses with high 
pandemic potential, the henipaviruses Nipah virus (NiV) and Hendra 
virus (HeV), both of which pose substantial threats to human health 
with recorded mortality rates of 50–100%37,38. A third phosphoprotein 
sequence was selected for the endemic virus human metapneumovirus 
(HMPV), whose infections occur more frequently than NiV and HeV, dis-
playing seasonal cold-like symptoms that are severe and sometimes fatal 
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in young children and elderly populations37. There are few to no vaccines 
or antiviral treatments approved for human use for these three viruses.

For each of the three viral phosphoproteins, 20 peptide-guided 
uAbs (Supplementary Table 4) were designed via PepMLM and then 
screened for their ability to induce proteasomal degradation of their 
respective phosphoproteins via western blotting and immunofluores-
cence imaging (Fig. 4). When uAbs were co-transfected with plasmids 
encoding for viral phosphoprotein target, a total of 37 degraders dem-
onstrated between 20% and 49% average reduction in protein levels, 
suggesting an overall hit rate of approximately 63%, in strong agree-
ment with our in silico hit rate shown in Fig. 1d (Fig. 4a–c). Although 
not significant, an obvious trend of diminished phosphoprotein levels 
can be observed with nearly all uAbs. Encouraged by these preliminary 
screening results, a smaller pool of candidate uAbs targeting HMPV 
were transfected into Vero AT cells, and, after infection, cells were 
stained using a fluorescent anti-HMPV phosphoprotein antibody. 
Immunofluorescent imaging shows near-complete amelioration 
of viral phosphoprotein levels for four uAbs (HMPV_12, HMPV_15, 
HMPV_18 and HMPV_19), which is likely to lead to reduced viral levels 
and infectivity in vivo (Fig. 4d).

Taken together, our experimental results strongly support the in 
silico benchmarking of PepMLM, with more than 60% of uAbs dem-
onstrating moderate to strong degradation when PepMLM-designed 

peptides were used as modular guides (Figs. 3 and 4). Similar suc-
cess was observed in binding analysis via ELISA, even compared to 
state-of-the-art structure-based binder design approaches (Fig. 2 
and Supplementary Fig. 8). Activity of PepMLM-designed peptides, 
both in vitro and in cellulo, demonstrates the algorithm’s efficacy 
in binder design against diverse targets, in various cellular environ-
ments and in relevant contexts requiring degradation of mutant 
proteins, highly homologous viral proteins, and pathway-driving 
regulatory proteins. As an example of the latter, PepMLM-derived 
uAbs not only induce degradation of MESH1, an NADPH phosphatase 
that regulates ferroptosis, a form of cell death that is character-
ized by iron accumulation and lipid peroxidation39 (Supplemen-
tary Fig. 9a,b), but the top degrader, MESH1_pMLM_1, also inhibits 
ferroptosis-related cell death (Supplementary Fig. 9c). These results 
highlight the potential of PepMLM as a general-purpose platform 
for programmable peptide-guided modulation of protein function, 
enabling both binding and degradation across a wide spectrum of 
therapeutically relevant targets.

Discussion
Overall, PepMLM is a finetuned version of ESM-2 that employs a 
straightforward masking–unmasking scheme, offering an accessible 
framework for designing linear peptide binders. We acknowledge that 
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Fig. 4 | Screening of antiviral PepMLM-derived uAbs in vitro. a–c, Twenty uAb 
plasmids were co-transfected with plasmid DNA for each of the phosphoproteins 
from NiV (a), HeV (b) and HMPV (c) in HEK293T cells using PEI MAX. Whole-cell 
lysates were harvested 48 hours after transfection using RIPA buffer according 
to the manufacturer’s protocol. uAbs and phosphoproteins were probed using 
mouse anti-Flag and rabbit anti-HA antibodies, respectively, in addition to a 
mouse anti-β-actin loading control antibody. ‘EV’ is an empty pCAGGS vector, 
and ‘P’ is a phosphoprotein-only control. Quantification of reduced detection 

of target phosphoprotein was determined by densitometry as described in the 
Methods. Data are presented as mean values ± s.d. (n ≥ 3 biological replicates). 
d, Each immunofluorescent image shows Vero AT cells transfected with either an 
empty vector plasmid (pcDNA) or an HMPV uAb plasmid. Twenty-four hours after 
transfection, cells were infected with HMPV. Twenty-four hours after infection, 
×10 immunofluorescent images were taken. HMPV phosphoprotein is shown 
in green, and cell nuclei are shown in blue. Each plasmid was tested with two 
biological replicates, each with two technical replicates.
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PepMLM is not a standard generative sequence model, in compari-
son to more traditional autoregressive or discrete diffusion and flow 
matching models15,40–44. Despite our more minimalist formulation, we 
demonstrate that PepMLM yields strong binder designs, across in silico, 
in vitro and therapeutically relevant contexts. Our future work will build 
upon recent generative protein language models such as ProGen3 (ref. 
45) or DPLM41,46 and incorporate more advanced sampling and search 
strategies tailored to encoder-only architectures. Such extensions 
will allow both binder generation and multi-objective conditioning 
for optimal therapeutic peptide design42,47.

To this point, we had used the lightweight ESM-2-650M model 
for PepMLM training, enabling flexible finetuning and inference. To 
assess the performance of larger models, we note that we additionally 
finetuned ESM-2-3B17 for peptide generation (PepMLM-3B) and evalu-
ated it using the same methodology as employed for the ESM-2-650M 
version of PepMLM (PepMLM-650M). However, as illustrated in Sup-
plementary Fig. 10, we did not observe a substantial improvement in 
either perplexity or hit rate for PepMLM-3B (36.02%). Considering the 
associated resource and inference costs, we provide our PepMLM-650M 
model as an accessible resource for effective linear peptide generation.

We envision that further improvements can be made to the 
PepMLM-650M model itself, enabling its adoption as a more uni-
versal tool for peptide binder design. For example, PepMLM can 
be retrained with modification-aware and variant-aware pLM 
embeddings to enable specificity to posttranslational isoforms 
over wild-type protein states46,48,49. Our future experimental work 
directions will include biochemical and molecular validation and 
characterization of the antiviral therapeutic potential of top selected 
uAbs within the groups tested for the emergent viral targets. We also 
plan to integrate PepMLM generation with high-throughput lentivi-
ral screening to further evaluate its hit rate and input experimental 
data back into the algorithm, creating an active learning-based opti-
mization loop50. As a note, we have not applied any experimental 
optimization of PepMLM-derived peptide binders, including further 
stabilization using cyclization or stapling—modifications that may 
improve therapeutic use47,51,52. We envision that through these addi-
tional developments, our accessible peptide generator, coupled 
with variants of our uAb and recent deubiquibody architecture53, 
will enable a CRISPR-analogous system to bind and modulate any 
target protein, whether structured or not.
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Methods
Data curation
In the data curation phase, protein and peptide complexes were amal-
gamated from the PepNN and Propedia databases24,25. Initially, redun-
dancy between the two datasets was eliminated, followed by the use 
of MMseqs2 to cluster the remaining protein sequences, setting a 
threshold of 0.8 (ref. 26). When protein sequences were identified 
within the same cluster and exhibited identical binder sequences, a 
single sequence was retained. This was followed by a manual filtering 
process, wherein protein sequences were sorted and those exhibiting 
high similarity (threshold of 80%) were removed to further mitigate 
homology issues. Consequently, a dataset comprising 10,203 entries 
was amassed, from which 10,000 were randomly allocated for training 
and 203 for testing. The maximum lengths for the binder and protein 
sequences were established at 50 and 500, respectively.

Conditional peptide modeling
Peptide binders are modeled in a distinctive manner, wherein the pep-
tides are modeled conditionally based on the full protein sequence. Let 
p = (p1, p2, p3,…, pn) represent the target protein sequence of length n 
and b = (b1, b2, b3,…, bm) denote the binder of length m. The protein and 
peptide sequences are concatenated, incorporating special tokens of 
start, end and padding. Mask language modeling transforms this into 
a conditional modeling problem, where the objective is to reconstruct 
b given p and the entire masked b region. The entire model is updated 
with MLM loss, which can be represented as:

ℒMLM = − 1
m ∑

i∈m
logP (bi|p,bmask)

Through this methodology, the discrepancy between the designed 
binders and the ground truth is minimized, facilitating the approxima-
tion of the conditional probability, ∏m

i=1 P (bi|p).

PepMLM training
The pretrained protein language model ESM-2 was used to facilitate 
full parameter finetuning. ESM-2, a transformer-based model, is adept 
at discerning co-evolutionary patterns across protein sequences. The 
concatenated protein and peptide sequences were tokenized at the 
amino acid level and input into the model. Deviating from the original 
training strategy of ESM, the entire binder sequence was exclusively 
masked, compelling the model to learn the relationship between the 
peptide binder and the protein. The ESM-2-650M and ESM-2-3B mod-
els were both trained for PepMLM. Both versions were trained on an 
NVIDIA 8x A100 640 GB DGX GPU system with PyTorch 2.01 and Python 
3.10.10. Specific parameters are shown in Supplementary Table 1.

PepMLM generation
During the generation phase, the target protein sequence, along with a 
designated number of mask tokens (at end), was input into the model. 
Subsequently, the model greedily decodes logits at each masked posi-
tion to identify peptide binders. To infuse greater diversity into the 
generation process, top-k sampling was implemented, wherein the 
model randomly selects the top k highest probability logits at each 
masked position.

PPL of PepMLM
The PPL of ESM-2 was adapted to focus specifically on the evaluation 
of peptide binder generation. Notably, the perplexity calculation is 
confined to the binder region or, in other words, the masked regions. 
Mathematically, the PPL is defined as:

Pseudo-perplexity (b) = exp {− 1
m

m
∑
i=1

logP (bi|b j ≠ i,p)}

In this equation, b represents the binder sequence, and m is the 
length of the binder sequence. This modification ensures a more 
focused evaluation of the designed peptide binders, aligning with 
the conditional modeling approach adopted in this study.

Peptide benchmarking
To assess the efficacy of the designed peptide binders, a benchmarking 
study was conducted on the test set. In the test set benchmarking, top-k 
sampling (k = 3) was employed to generate a single peptide binder for 
each target protein. Additionally, the original ESM-2 model was used 
to generate peptides, and random peptides of equivalent length were 
created. For ESM-2 generation, specifically, mask tokens of the same 
length were added at the end of target protein sequences for analo-
gous model prediction and decoding as for PepMLM. The perplexity 
of the PepMLM was compared across four groups. PepMLM-designed 
binders and test binders were folded using AlphaFold2 ColabFold ver-
sion 1.5.2, in conjunction with the protein sequences. Folding metrics 
including pLDDT and ipTM were gathered, which were used to correlate 
perplexity findings. For each test target protein, the ipTM scores of the 
test and designed binders were compared to determine the overall hit 
rate. Notice, as top-k sampling generates with randomness, the hit rate 
might vary or increase with different runs or k options.

RFdiffusion generation
In parallel to the PepMLM approach, RFdiffusion was employed to 
design peptide binders for both cases. For the given test set, RFdif-
fusion was tasked with generating one peptide binder per target 
protein, matching the length specified by the ground truth binders. 
The generated backbones were then converted into sequences using 
ProteinMPNN with initial guess and number of cycles of 3. The top 
sequence was selected via root mean square deviation. RFdiffusion 
inference code on ColabFold can be found at https://colab.research.
google.com/github/sokrypton/ColabDesign/blob/v1.1.1/rf/examples/
diffusion.ipynb.

Co-folding complex visualization
Structural visualization was performed using ChimeraX 1.7.1. The 
structures were superimposed using the MatchMaker tool, and 
interatomic contacts were identified using a van der Waals overlap 
threshold of ≥ −0.4 Å. The target proteins are shown in gray, whereas 
the PepMLM-designed and test binders are colored in red and blue, 
respectively. Their corresponding contact residues are highlighted in 
matching colors. Amino acid labels are displayed in the focused view.

For the rest visualization of AlphaFold-Multimer co-folding results 
from PepMLM-designed binder–protein complexes, an initial alignment 
with the corresponding test complex was performed using Biopython 
version 1.8.3, which facilitated a comparative visualization of selected 
complexes, encompassing both the designed and test binders. In these 
visualizations, the target protein was depicted in yellow, contrasting 
with the test and designed binders colored in blue and red, respectively. 
The visualizations were executed using py3Dmol version 2.0.4.

Alignment and identity
Target protein sequence similarity was assessed through two com-
plementary approaches. Sequence identity between test and train-
ing sets was computed using the biotite Alignment method with an 
identity matrix. For each test target protein, the maximum identity 
score against all training set sequences was recorded. Additionally, a 
broader sequence similarity analysis was conducted using MMseqs2 
(easy-search) to query both train and test target protein sequences 
against UniRef50, the training dataset of ESM-2.

Expression and purification of SUMO–peptide constructs
Peptides of interest were cloned into a pET-24a+ (Novagen) expres-
sion vector containing an N-terminal 6×-histidine–SUMO tag to 
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facilitate downstream purification. Oligonucleotide primer pairs, 
each encoding for one half of the peptide sequences, were designed 
using NEBaseChanger V2 (https://nebasechanger.neb.com/) and then 
incorporated into the plasmid using Q5 site-directed mutagenesis, 
as per the manufacturer’s instructions. Site-directed mutagenesis 
reactions were carried out according to the same protocol. Plasmid 
assembly was verified using Sanger sequencing (GENEWIZ) and then 
transformed into chemically competent Escherichia coli BL21(DE3) 
cells. Starter cultures (3 ml of LB media, 50 µg ml−1 kanamycin) were 
inoculated from freshly streaked agar plates or glycerol stocks and 
grown at 37 °C with shaking at 225 r.p.m. overnight. Starter cultures 
were then diluted 1:500 in bulk cultures and grown to an optical density 
at 600 nm (OD600) of 0.6–0.8 and then induced at a concentration of 
1 mM isopropyl β-d-thiogalactopyranoside (IPTG) overnight at 37 °C 
with shaking. Thirty minutes after induction, rifampicin was added 
to a final concentration of 150 µg ml−1. Cells were then collected by 
centrifugation (4,500g) at 4 °C and washed twice with ice-cold 1× PBS. 
The resulting cell pellets were frozen at −20 °C overnight, thawed to 
room temperature and then lysed using BugBuster protein extraction 
reagent (Millipore Sigma, 70584-3) supplemented with recombinant 
lysozyme (Millipore Sigma, 71110-3) and benzonase endonuclease 
(Millipore Sigma, E1014-25KU) for 20 minutes at room temperature 
with gentle rocking. The corresponding lysate was diluted with lysis 
buffer (1× PBS, 20 mM imidazole, 1× Halt protease inhibitor cocktail 
(Thermo Fisher Scientific, 78430)) and then centrifuged at 14,000g 
for 30 minutes. The cleared supernatant was mixed end over end at 
4 °C for 30 minutes with HisPur Ni-NTA resin (Thermo Fisher Scien-
tific, 88221) equilibrated with 20 mM imidazole in 1× PBS. Resin was 
centrifuged at 700g for 2 minutes and then washed three times with 
50 mM imidazole in 1× PBS. Protein was eluted with three consecutive 
washes with 500 mM imidazole, concentrated (Millipore Sigma, 3K 
MWCO, UFC900308) and desalted using Zeba spin desalting columns 
(Thermo Fisher Scientific, 89892). Expression and purity of purified 
proteins in both the soluble and insoluble fraction, as well as puri-
fied fractions, were assessed using SDS-PAGE (Supplementary Fig. 8). 
Protein concentrations were quantified using a Qubit Protein Assay 
(Thermo Fisher Scientific, Q33211).

Sandwich ELISA
Purified SUMO-tagged peptide constructs were coated onto 96-well 
plates (Corning, CLS9018) at a concentration of 2 µg ml−1 in coat-
ing buffer (10 mM phosphate, pH 7.4) at a volume of 50–100 µl per 
well at 4 °C overnight with gentle rocking. Plates were washed once 
with Tris-buffered saline (50 mM Tris-HCl, 150 mM NaCl) supple-
mented with 0.05% Tween 20 (v/v) (TBS-T) and then blocked with 
300 µl of SuperBlock in PBS (Thermo Fisher Scientific, 37516) per 
the manufacturer’s instructions. BSA, recombinant AMHR2-Fc (Sino 
Biological, 10673-H02H) and recombinant NCAM1-Fc (Sino Biological, 
15785-H02H2) were serially diluted in triplicate or more in SuperBlock 
with 0.05% Tween 20, after which 100 µl of each solution was added to 
each well and incubated at room temperature with gentle rocking for 
1.5 hours. Plates were then washed five times using 300 µl of TBS-T per 
well and then incubated with 100 µl of anti-human IgG (HRP) detection 
antibody (Thermo Fisher Scientific, A18805, diluted 1:10,000 in Super-
Block with 0.05% Tween 20) for 1 hour at room temperature. Plates were 
again washed five times with 300 µl of TBS-T and then incubated with 
100 µl per well of 3,3′-5,5′-tetramethylbenzidine substrate (1-Step Ultra 
TMB-ELISA; Thermo Fisher Scientific, 34029) for 30 minutes at room 
temperature with gentle rocking. Finally, the reaction was quenched 
with 100 µl of 2 N H2SO4, and absorbance at 450 nm was immediately 
quantified using a Promega GloMax Discover plate reader.

Generation of mammalian plasmids
All uAb plasmids were generated from the standard pcDNA3 vector, har-
boring a cytomegalovirus promoter and a C-terminal P2A–GFP cassette 

as a transfection control. An Esp3I restriction site was introduced 
immediately upstream of the CHIPΔTPR coding sequence and flexible 
GSGSG linker via KLD Enzyme Mix (NEB) following polymerase chain 
reaction (PCR) amplification with mutagenic primers (GENEWIZ). For 
uAb assembly, PepMLM-derived peptide sequences (Supplementary 
Table 4) were human codon optimized for complementary oligo gen-
eration (GENEWIZ). Oligos were annealed and ligated via T4 DNA Ligase 
into the Esp3I-digested uAb backbone. Assembled constructs were 
transformed into 50 µl of NEB Turbo Competent E. coli and plated onto 
LB agar supplemented with the appropriate antibiotic for subsequent 
sequence verification of colonies and plasmid purification (GENEWIZ).

Sequences for human codon-optimized phosphoprotein genes 
for NiV (GenBank, AY029767), HeV (GenBank, MN062017) and HMPV 
(GenBank, AAS22075) were designed with HA tags on their N termini 
and flanked with restriction enzyme recognition sites for KpnI and 
XhoI on their 3′ and 5′ ends, respectively, for ligation into a mammalian 
pCAGGS vector.

Cell culture for target degradation
HEK293T and Vero AT cells were maintained in DMEM supplemented 
with 100 U ml−1 penicillin, 100 mg ml−1 streptomycin and 10% FBS. 
uAb-encoding plasmids (500 ng) were transfected into cells (4 × 105 
per well in a 12-well plate) with Lipofectamine 2000 (Invitrogen) in 
Opti-MEM (Gibco). TruHD-Q43Q17M cells were maintained in Eagle’s 
Minimum Essential Medium with Earle’s Salts (EMEM) supplemented 
with 15% FBS, 1% NEAA (Gibco) and 1% GlutaMAX (Gibco). For HTT 
degradation studies, PepMLM peptides were transfected into fibro-
blasts using the SG cell line 4D-Nucleofector X Kit (Lonza). For viral 
protein degradation, transfections were done with HEK293T cells at 
approximately 90% confluency in six-well plates using a 4:1 µl:µg ratio 
of PEI MAX to DNA, following the transfection reagent manufacturer’s 
protocol. Target phosphoprotein plasmids were transfected at a 1:1 
ratio with uAb plasmids for a total of 2 µg of DNA per well in Opti-MEM. 
Transfections were supplemented with Opti-MEM at approximately 
5 hours after transfection. HMPV strain TN93-32 (BEI) was propagated 
in Vero AT cells for 5 days in DMEM supplemented with 100 U ml−1 
penicillin, 100 mg ml−1 streptomycin and 2% FBS. RPE1 cells used for 
MSH3 studies were maintained in DMEM/Nutrient Mixture F-12 (Gibco) 
supplemented with 10% FBS and 10 µg ml−1 hygromycin B (Gibco) and 
transfected with PepMLM peptides using the TransIT-X2 Dynamic 
Delivery System (Mirus Bio).

MSH3 quantitative immunofluorescence
MSH3 antibody (Thermo Fisher Scientific, PA5-29829) was directly 
labeled using an Alexa Fluor Antibody Labeling Kit (Invitrogen). 
Transfected RPE1 cells were fixed 2 days after transfection using 4% 
paraformaldehyde (Thermo Fisher Scientific) for 20 minutes at room 
temperature and permeabilized using 0.2% Triton X-100 (BioShop) 
for 10 minutes at 4 °C. The cells were blocked using a blocking buffer 
(10% FBS in PBS) overnight and incubated with the labeled primary 
antibody diluted in blocking buffer (1:50) for 1 hour. The cells were 
then incubated with 2 µg ml−1 Hoechst 33258 (Thermo Fisher Scien-
tific) for 5 minutes at room temperature. The imaging was done using 
an EVOS M7000 Imaging System (Thermo Fisher Scientific) at ×20. 
Cell segmentation and signal quantification was done using CellPro-
filer. When conducting downstream analysis, the TRITC signal from 
the PepMLM plasmid transfection was used to select for transfected 
cells. Data were analyzed to assess the statistical significance of dif-
ferences in normalized intensities between the control group (polyG) 
and treatment groups (pMLM1–pMLM6). Outliers for all samples were 
removed using the interquartile range (IQR) method, where values 
greater than the third quartile plus 1.5 times the IQR were excluded 
to ensure robust comparisons. Statistical comparisons between the 
control and each treatment group were performed using a one-sided 
Mann–Whitney U-test. Significance thresholds were defined as follows: 

http://www.nature.com/naturebiotechnology
https://nebasechanger.neb.com/


Nature Biotechnology

Article https://doi.org/10.1038/s41587-025-02761-2

*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 and *****P < 0.00001. 
Non-significant comparisons were denoted as ‘NS’. All analyses were 
conducted using Python, and plots were generated using Matplotlib.

HTT western blotting
The PepMLM peptide expression was induced using 1 µg ml−1 doxycycline 
(Sigma-Aldrich) 3 days before harvest and replenished every 2 days. On 
the day of harvest, TruHD-Q43Q17M cells were washed with 1× PBS and 
then lysed and scraped off using RIPA buffer (50 mM Tris-HCl pH 8.0, 
150 mM NaCl, 1% NP-40, 0.25% sodium deoxycholate, 1 mM EDTA) with 
protease and phosphatase inhibitors (Thermo Fisher Scientific) on ice. 
The mixture was incubated on ice for 5 minutes followed by centrifuga-
tion at 13,000 r.p.m. for 5 minutes at 4 °C. The supernatant was collected 
and quantified using a BCA Protein Assay Kit (Sigma-Aldrich). Then, 
4× loading buffer (250 mM Tris pH 6.8, 40% glycerol, 8% SDS, 0.02% 
bromophenol blue) was added to the supernatant and incubated at 95 °C 
for 5 minutes. Immunoblotting was performed using precast 4–20% 
gradient gels (Bio-Rad) and then transferred onto an Immobilon-P PVDF 
membrane (Millipore). The membranes were blocked in 5% skim milk 
powder in 1× TBS-T (50 mM Tris-HCl, pH 7.5,150 mM NaCl, 0.1% Tween 20) 
at 4 °C overnight and then probed with rabbit anti-huntingtin antibody 
(Abcam, EPR5526, 1:5,000) or rabbit anti-vinculin antibody (Abcam, 
EPR8185, 1:5,000) in the same buffer for 1 hour at room temperature. 
The membranes were washed three times with 1× TBS-T and then three 
times with 2.5% skim milk powder in 1× TBS-T for 5 minutes each. The 
membranes were then probed with HRP-conjugated secondary anti-
bodies (Abcam, 1:50,000) for 30 minutes at room temperature before 
being washed again and incubated with Immobilon Western Chemilu-
minescent HRP Substrate (Millipore) and imaged with a MicroChemi 
chemiluminescence detector (DNR Bio-Imaging Systems). Densitometry 
analysis was conducted using ImageJ. PolyG controls were first normal-
ized by vinculin loading control with this normalized polyG being used 
to normalize uAb band degradation.

Viral phosphoprotein western blotting
HEK293T cells were harvested 48 hours after transfection and lysed 
using 1× RIPA buffer (Millipore) containing complete protease inhibi-
tor (Sigma-Aldrich). The cells were incubated at 4 °C, rocking, for 
40 minutes before being vortexed at 5-minute intervals for 20 min-
utes. Cell lysate supernatants were collected after centrifugation at 
21,000g for 30 minutes at 4 °C. To denature samples for SDS-PAGE, 
cell lysates were mixed and incubated with 1.8% SDS containing 5% 
β-mercaptoethanol for 10 minutes at 95 °C before loading onto 10% 
acrylamide-Tris HCl gels. Proteins were separated at 100 V for 2 hours 
and then transferred onto 0.2-µm PVDF membranes at 0.5 A for 2 hours. 
Membranes were blocked in PBS with 0.2% Tween 20 (PBS-T) contain-
ing 4% BSA before staining in 1:1,000 dilutions of mouse anti-Flag 
(Millipore, F1804), mouse anti-β-actin (Santa Cruz Biotechnology, 
47778) and rabbit anti-HA (BioLegend, 923502) primary antibodies. 
Secondary antibody staining was performed using 1:1,000 dilutions of 
goat anti-mouse Alexa Fluor 647 and goat anti-rabbit Alexa Fluor 488 
secondary antibodies (Invitrogen, A21236 and A11008, respectively). 
Blocking, primary and secondary antibody membrane incubations 
were performed rocking at room temperature for 30 minutes, 1 hour 
and 30 minutes, respectively. Membranes were rinsed with PBS-T three 
times for 5 minutes after each antibody staining. All membranes were 
imaged using a Bio-Rad imager in respective Alexa Fluor channels. 
Densitometric quantification was performed using ImageLab for phos-
phoprotein and β-actin bands. Background densities from samples 
mock transfected with pCAGGS vector only were subtracted. Then, 
sample densities were normalized to their respective β-actin signals 
before normalization to their respective phosphoprotein controls. 
Data represent n ≥ 3 experimental replicates. Generation of bar graphs 
was performed using GraphPad Prism version 10, and the schematic 
diagram was made using BioRender (https://www.biorender.com/).

Immunofluorescent staining of viral phosphoprotein
Vero AT cells were seeded in 24-well plates to 90% confluency; after 
transfection and infection with HMPV, cells were washed with DPS 
twice and then fixed with 4% paraformaldehyde at room temperature 
to be subsequently permeabilized with a solution of 0.1% Triton X-100 
in PBS. Custom polyclonal rabbit serum made against HMPV M was 
used for viral detection. After 1 hour, bound antibodies were detected 
with goat anti-rabbit secondary antibody conjugated with Alexa Fluor 
488 (Invitrogen). Finally, the cellular nuclei were labeled with Hoechst 
(Thermo Fisher Scientific) in PBS for 10 minutes, and the images were 
examined using an ECHO Revolve microscope (BICO).

Cell culture for MESH1 degradation and ferroptosis protection
HEK293T cells were obtained from the Duke Cell Culture Facility and 
originated from the American Type Culture Collection (ATCC). The 
cells were cultured in DMEM 4.5 g l−1 glucose and 4 mM glutamine 
(Thermo Fisher Scientific, 11995-DMEM) and 10% heat-inactivated FBS 
(HyClone, SH30070.03HI) in a humidified incubator at 37 °C with 5% 
CO2. For MESH1 immunoblotting, HeLa cells originating from the ATCC 
were maintained in DMEM supplemented with 100 U ml−1 penicillin, 
100 mg ml−1 streptomycin (Gibco) and 10% FBS. For uAb screening in 
reporter cell lines, 800 ng of pcDNA-uAb plasmids was transfected into 
cells in triplicate (3 × 105 per well in a 12-well plate) with Lipofectamine 
2000 (Invitrogen) in Opti-MEM (Gibco). Cells were harvested 72 hours 
after transfection for subsequent immunoblotting.

MESH1 western blotting
On the day of harvest, cells were detached by adding 0.05% 
trypsin-EDTA and washing cell pellets twice with ice-cold 1× PBS. Cells 
were then lysed using a 1:100 dilution of protease inhibitor cocktail 
(Millipore Sigma) in Pierce RIPA buffer (Thermo Fisher Scientific). 
Specifically, the protease inhibitor cocktail–RIPA buffer solution was 
added to the cell pellet, and the mixture was placed at 4 °C for 30 min-
utes followed by centrifugation at 15,000 r.p.m. for 10 minutes at 4 °C. 
The supernatant was collected immediately to pre-chilled PCR tubes 
and quantified using a Pierce BCA Protein Assay Kit (Thermo Fisher 
Scientific). Then, 20 μg of lysed protein was mixed with 4× Bolt LDS 
Sample Buffer (Thermo Fisher Scientific) with 5% β-mercaptoethanol 
in a 3:1 ratio and subsequently incubated at 95 °C for 10 minutes prior 
to immunoblotting, which was performed according to standard pro-
tocols. In brief, samples were loaded at equal volumes into Bolt Bis-Tris 
Plus Mini Protein Gels (Thermo Fisher Scientific) and separated by 
electrophoresis. iBlot 2 Transfer Stacks (Invitrogen) were used for mem-
brane blot transfer, and, after a 1-hour room-temperature incubation in 
5% milk–TBS-T, proteins were probed with rabbit anti-HDDC3 antibody 
(Sigma-Aldrich, HPA040895, diluted 1:1,000) or rabbit anti-vinculin 
(Invitrogen, 700062, diluted 1:2,000) for overnight incubation at 
4 °C. The blots were washed three times with 1× TBS-T for 10 minutes 
each and then probed with a secondary antibody, donkey anti-rabbit 
IgG (H + L) (HRP) (Abcam, ab7083, diluted 1:5,000), for 1 hour at room 
temperature. After three washes with 1× TBS-T for 10 minutes each, 
blots were detected by chemiluminescence using an Invitrogen iBright 
CL1500 Imaging System. Densitometry analysis of protein bands in 
immunoblots was performed using FIJI software as described at https://
imagej.nih.gov/ij/docs/examples/dot-blot/. In brief, bands in each 
lane were grouped as a row or a horizontal ‘lane’ and quantified using 
FIJI’s gel analysis function. Intensity data for the uAb bands were first 
normalized to band intensity of either vinculin in each lane and then 
to the average band intensity for the polyG–uAb vector control cases 
across replicates.

Ferroptosis protection assay
HEK293T cells were reverse transfected using 1 μg of uAb plasmid and 
3 μl of Mirus TransIT-LT-1 (Mirus Bio) transfection reagent for 48 hours, 
using the standard protocol for a 12-well plate as described by the 
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manufacturer. The transfected HEK293T cells were transferred 2,500 
cells per well to a 96-well plate, and 10 M erastin (Cayman Chemical) was 
added to the media to induce ferroptosis. Cell viability was measured 
24 hours later using the Cell-Titer Glo (Promega) assay following the 
manufacturer’s protocol.

Statistical analysis and reproducibility
Unless otherwise noted, all data are reported as average values with 
error bars representing s.d. For samples performed in independent 
biological triplicates (n = 3) or more, statistical significance was 
determined by unpaired t-test, one-way ANOVA followed by a Dun-
nett’s multiple comparison test, paired one-sided Student’s t-test or 
Mann–Whitney U-test as indicated (*P < 0.05; **P < 0.01; ***P < 0.001; 
****P < 0.0001; *****P < 0.00001). Quantitative immunofluorescence 
sample sizes were 1,954, 1,311, 1,218, 3,662, 3,079, 2,887 and 3,845 for 
the polyG control and MSH3_pMLM_1–6, respectively. All graphs were 
generated using GraphPad Prism 10 version 14.4.1 or in Matplotlib. 
No data were excluded from the analyses unless specifically noted 
otherwise. The experiments were not randomized. The investigators 
were not blinded to allocation during experiments and outcome 
assessment.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All source data, including raw and processed data (that is, raw immu-
noblots), have been deposited to the following Zenodo repository: 
https://doi.org/10.5281/zenodo.15122756 (ref. 54).

Code availability
All code and data used to train PepMLM are available at https://github.
com/programmablebio/pepmlm. The PepMLM-650M datasets, code 
and model are also hosted on Hugging Face with an easy-to-use demo 
for peptide generation: https://huggingface.co/ChatterjeeLab/
PepMLM-650M (ref. 55).
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