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Abstract—This paper presents experimental results on 

differentiating between healthy wheat plants and plants 

infected with Fusarium Head Blight (FHB) based on sensing 

the ambient gases in the plant environment using a 

gravimetric electronic nose enabled by a functionalized 

capacitive micromachined ultrasonic transducer (CMUT) 

array and machine learning (ML) algorithms. The CMUT 

sensor array is functionalized with organic/inorganic 

materials to capture disease-related volatile signals. The 

sensor data is processed and analyzed using ML algorithms 

for accurate plant classification. Experimental results 

demonstrate the effectiveness of the proposed approach in 

achieving high accuracy for plant disease detection at the end 

of the 11th day after plant inoculation. 

Keywords—VOCs; plants; infection; disease; e-nose; 

machine learning. 

I. INTRODUCTION 

Plant diseases cause significant threats to agricultural 
productivity and global food security. Timely and accurate 
detection of plant diseases is crucial for effective disease 
management, prevention of crop losses, and sustainable 
agricultural practices, which will result in reducing 
economic losses [1].  

Various technologies are currently employed in the 
diagnosis of plant diseases [2]–[6]. Although these 
techniques exhibit efficacy and sensitivity in detection, their 
implementation predominantly occurs within laboratory 
settings, necessitating the utilization of intricate 
instrumentation that mandates specialized proficiency for 
operation. Traditional methods of plant disease diagnosis 
primarily rely on visual inspection, which often results in 
delayed detection and ineffective control measures [7]. 
However, recent advancements in sensor technologies, 
particularly gas sensors, have opened up new avenues for 
early disease detection and precision agriculture [8]. 

Gas sensors offer the advantage of non-destructive and 
real-time monitoring, enabling rapid detection of plant 
diseases even at the earliest stages, when symptoms may 
not be visually apparent. By detecting the volatile organic 
compounds (VOCs) emitted by plants, gas sensors provide 
valuable insight into the biochemical and physiological 
changes occurring in plants affected by the disease [9]. Gas 
sensors enable the identification of specific diseases or 
disease patterns, facilitating targeted intervention strategies 
for disease management and control. Furthermore, 
integrating sensor technologies with precision agriculture 
could revolutionize plant disease management practices 

[10]. By continuously monitoring the VOC emissions from 
crops, gas sensors can provide real-time data on disease 
dynamics within a field or greenhouse environment. This 
information enables farmers to make data-driven decisions 
regarding disease control measures, such as targeted 
pesticide applications or optimized storage strategies, thus 
minimizing the use of agrochemicals and reducing the 
environmental impact [11]. 

Gas sensors for plant disease detection are undergoing 
rapid development and refinement, with advancements in 
sensor design, sensitivity, selectivity, and data analysis 
techniques. Researchers explore various sensor types, each 
with advantages and limitations. Additionally, integrating 
gas sensors with machine learning algorithms holds 
immense potential for enhancing disease detection accuracy 
and automation [12].  

This paper aims to present functionalized CMUT sensor 
array results for plant disease detection in growth chambers 
using ML-based classification algorithms. This work 
attained a precision level of over 85% within an adequate 
dataset. The successful validation of a notable accuracy 
during the proof-of-concept phase promises the prospective 
efficacy of the device in the actual application. Details of 
sensor preparation, experimental setup, gas testing, and 
results from plant experiments are provided in the following 
sections. 

II. EXPERIMENTAL WORK 

A. Preparation of Sensors 

Capacitive micromachined ultrasonic transducer 
(CMUT) arrays used for sensor implementation in this 
study were fabricated on a 100-mm glass wafer using 
standard microfabrication techniques [13]. The array 
consists of 8 elements (Fig. 1a). The top surface of the 
CMUT elements was coated with gold. In addition to one 
unfunctionalized (gold) channel, Polyisobutylene (PIB), 
Polydimethylsiloxane (PDMS), Copper (II) Phthalocyanine 
(CuPc), and silver nanoparticles (Ag) were used as sensing 
layers on other channels. Each element in the array was 
functionalized with 0.1-wt% diluted solutions by using the 

This work was supported by the National Science Foundation by a 
Partnership for Innovation Grant (2044684). 

 
Fig. 1. a) E-nose sensor array, b) Test chamber. 
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drop coating technique [14], [15]. The array elements were 
wire-bonded on a chip carrier connected to the supporting 
electronics. The whole system was powered by a 3.7-V 
lithium-ion battery and placed in a small chamber to 
perform the gas tests (Fig. 1b).   

B. Plants Inoculation 

The Perigee wheat plants provided by BASF were grown 
in Cone-tainers containing a soil-less mix in an air-
conditioned greenhouse with a 50% shade curtain for 25 
days (four days for emergence plus three weeks post-
emergence). Greenhouse temperatures were set to 25°C 
during the day and 17°C during the night. Relative 
humidity was 65% and day length was 16 hours. Plants 
were then selected for uniformity and moved to a growth 
chamber before treatment. 

An aerosol sprayer was used to spray the head of plants 
(around Feekes 10.5) with fungal inoculum (10,000 
spores/ml) or sterile water (mock) from top to bottom until 
liquid was dripping from plants. The plants were moved to 
dark dew chambers set at 25°C with 95-98% relative 
humidity for 24 hours. Then placed back into the growth 
chambers. As a secondary control and to test method 
related plant stress volatiles, untreated (healthy) plants that 
were not exposed to the dew chamber were used to collect 
volatile compounds.    

C. Experimental Setup 

The infected and mock treated plants were grown and 

placed in the growth chambers for testing. Fig. 2 shows a 

schematic sensor setup. As the first step of the testing 

procedure, a sensor baseline was obtained by using 

ambient air filtered by desiccants. Plant gas samples were 

collected through each growth chamber using a vacuum 

pump. Only one solenoid valve was active at a time, while 

the rest were off. The described sampling process was 

repeated many times to have adequate data for 

implementing the machine learning algorithms for 

classification. Moreover, the data were collected on the 6th 

day and 11th day after the inoculation of the plants. 

D. Data Processing 

MATLAB 2021a was utilized for all data processing 
(Fig. 3). The sensor data were collected from the plants on 
the 6th day and 11th day after inoculation. Initially, a 
baseline correction was implemented on the raw data to 
prevent signal drift caused by environmental factors [16]. 
Subsequently, frequency shift (Δf) features were extracted 
from the sensor signal, using subtraction of data points 
between the gas on and the gas off states, (Fig. 3). For 
evaluating the classification performance, various machine 
learning (ML) algorithms, namely Random Forest (RF), k-
Nearest Neighbor (k-NN), and Support Vector Machine 
(SVM) were employed. A k-fold cross-validation technique 
was utilized, where a model was created using a training set 
(k-1) and evaluated using the remaining set as the test set. 
This process was repeated iteratively for k times. The 
accuracy results were presented as a confusion matrix in k-
fold cross-validation, comprehensively explained in a 
previous study [14].  

Machine learning (ML) algorithms often come with 
default hyperparameters, which are pre-defined settings. 
This can be a quick and convenient way to start machine 
learning, especially when exploring a new algorithm or 
dealing with a small dataset. By performing model tuning, 
hyperparameter settings that are more suitable for a specific 
dataset and problem can be obtained. This can lead to 
improved model performance, accuracy, generalization, and 
predictions or results. The model tuning was implemented 
using different hyperparameters for each model to minimize 
five-fold cross-validation loss in the data using Bayesian 
optimization of the classifiers. These hyperparameters were 
found using automatic hyperparameter optimization, which 
gives the best hyperparameters for each classifier. 

III. RESULTS AND DISCUSSION 

A. Infected and Mock Treated Plants on Different Days 

At 6 days after infection, early symptoms (yellowing) 
were observed in heads of infected plants compared to 

 
Fig. 2. Experimental setup. 

 
Fig. 3. Data processing flow chart and baseline-corrected signal 
response of Au sensor. 

Authorized licensed use limited to: Chinese Academy of Agricultural Sciences. Downloaded on August 01,2025 at 02:59:42 UTC from IEEE Xplore.  Restrictions apply. 



mock infected control plants (Fig. 4). Clear differences 
were observed at 11 days. Infected plants showed head 
bleaching, indicative of FHB symptoms. Mock infected 
plants showed no bleaching, but some evidence of 
physiological stress (leaf yellowing) was observed in both 
mock and infected plants. 

B. Classification of the Plants by the CMUT E-Nose 

Technology and Data Analytics 

In Table 1, the prediction accuracies of several models 
were shown to analyze the distinction between the mock 
treated and infected plants on the 6th day (D6) and the 11th 
day (D11) after inoculation. All ML algorithms had higher 
classification accuracy on D11 than that on D6. The highest 
accuracies on both D6 and D11 were obtained by using the 
SVM classifier (Fig 5a and Fig. 5b). It was observed that 
almost 50% of the time, the plants were mismatched on the 
D6 data set. However, classification accuracy increased to 
85% for the D11 data set, which might be caused by the 
increasing disease status of the plants. 

TABLE 1. CLASSIFICATION ACCURACY RESULTS FOR THE PLANTS ON TWO 

DIFFERENT DAYS 

           ML 

Feature 

k-NN SVM RF 

D6 D11 D6 D11 D6 D11 

Δf1 40 85 45 85 37 82 

Δf2 52 85 50 83 42 87 

D6, D11: They refer to the 6th and 11th days after infection of the plants, respectively. 
Δf1: Default hyperparameters of the models were used. 
Δf2: Hyperparameter optimization of the models were done.  
All the numbers represent the classification accuracy. 
The model tuning was performed on the ML classifiers. 

 

Table 1 also shows that the model tuning increased the 
classification accuracy, e.g., from 82% to 87% for the RF 
classifier (Fig. 5c). It was observed that 90% of the infected 
plant data samples were classified correctly. In comparison, 
this ratio for the mock plant data set was around 83%, 

which showed that 25 out of 30 samples were correctly 
classified as mock plants. The hyperparameters of the RF 
classifier are optimized using the Bayesian optimization 
method. For the present dataset, optimum number of 
“meanleafsize” was calculated as 13, and the optimum 
method turned out to be the “GentleBoost”, which 
minimizes the exponential loss because of prediction. 

Within this work, we have conducted a comparative 
analysis of classification performance using model tuning 
on the ML classifiers. Our findings indicate that 
hyperparameter optimization improves classification 
performance.  

IV. CONCLUSION 

Previously, we have introduced an e-nose sensor 
technology and explored its applications for environmental 
sensing as well as plant volatiles in a laboratory setting 
[14], [15]. This work has presented that the sensor 
prototype produces results in the plant environment 
indicating remote real-time monitoring for crop yield could 
be feasible. Our primary objective was to demonstrate this 
technology in a growth chamber environment as a first step 
for deployment to realistic plant environments. Next, we 
will test our sensors in more realistic environments, such as 
larger growth chambers, greenhouses, etc. We also aim to 
detect differences between the diseased plants and control 
plants in earlier stages of disease progression by refining 
our gas sampling procedures, optimizing the chemical 
functionalization layers in our sensor prototype, and fine-
tuning the classification algorithms used. 
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Fig. 4. Mock-treated plants on a) day 6 and c) day 11. Infected plants 
on b) day 6 and d) day 11. 

 
Fig. 5. Comparison of confusion matrices for a) day 6 and b) day 11, 
c) Confusion matrix resulting from model tuning 
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