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 A B S T R A C T

Evolutionary algorithms have proven effective in addressing the Ribonucleic Acid (RNA) inverse folding 
problem, a critical challenge in Biomedical Engineering. This problem, involving the discovery of a nucleotide 
RNA sequence that folds into a desired secondary structure, is formulated as a Multiobjective Optimization 
Problem. In this study, we introduce an approach incorporating three objective functions (Partition Function, 
Ensemble Diversity, and Nucleotides Composition) and a constraint (Similarity), utilizing a real-valued 
chromosome encoding.

The primary focus is on analyzing and comparing the performance of four multiobjective evolutionary 
algorithms. We explore various crossover (Simulated Binary, Differential Evolution, One-Point, Two-Point, K-
Point, and Exponential) and selection (Random and Tournament) operators, coupled with a fixed mutation 
operator (Polynomial). Our investigation involves 48 distinct algorithm-operator combinations, with the aim 
of solving a well-known benchmark set.

This research makes a significant contribution to the field of Artificial Intelligence by addressing a complex 
problem through the lens of Multiobjective Optimization. The proposed framework not only advances our 
understanding of RNA inverse folding but also demonstrates the versatility of evolutionary algorithms in 
tackling real-world challenges in Biomedical Engineering. Our findings provide valuable insights into the 
behavior of different algorithmic elements and combinations, identifying optimal and suboptimal performers 
for future research and practical applications.
1. Introduction

Although the RNA molecule is mainly known for its role as a coding 
mRNA, in recent years increasing attention has been paid to functional 
non-coding RNAs (ncRNAs), whose functions include, among others, 
regulation of gene expression, splicing, translation or epigenetic control 
of chromatin (Hombach and Kretz, 2016). As a consequence, synthetic 
RNAs have found a place in areas such as drug and therapeutic agents 
as construction of ribozymes and riboswitches (Busch and Backofen, 
2006), nano-biotechnology in the context of building self-assembling 
structures from RNA molecules (Qiu et al., 2013), or synthetic biol-
ogy (Meyer et al., 2015). These practical applications require the design 
of a specific RNA molecule that performs a desired function.

A related and well-studied problem is RNA folding, which consists in 
predicting the most likely secondary structure of a given RNA sequence 
of four nucleotides: Adenine (A), Guanine (G), Cytosine (C), and Uracil 

Abbreviations: CA, Convergence-oriented Archive; CV, Constraint Violation; DA, Diversity-oriented Archive; DBPs, Disruptive Base Pairs; ED, Ensemble 
Defect; HV, Hypervolume; NED, Normalized Energy Distance; SAP, Single-Action-Playout
∗ Corresponding author.
E-mail addresses: arl@unex.es (Á. Rubio-Largo), nulogar@unex.es (N. Lozano-García), granado@unex.es (J.M. Granado-Criado).

(U) (primary RNA structure). The hydrogen bonds established between 
two specific nucleotides lead to canonical Watson–Crick base pairs 
(AU, UA, GC, CG) (Seeman et al., 1976; Rosenberg et al., 1976) and 
fundamental UG/GU wobble base pairs (Varani and McClain, 2000).

The biological function that a ncRNA molecule performs is largely 
determined by its 3D structure (tertiary structure), which depends 
on how it folds due to its base-pairing interactions (secondary struc-
ture) (Tinoco and Bustamante, 1999). Consequently, to obtain an 
ncRNA that fulfills a desired function in a biological system, it must 
spontaneously fold into the specific structure appropriate for that func-
tion. Therefore, it will be necessary to discover an ncRNA nucleotide 
sequence that is predicted to fold into that target structure. This matter 
is known as the RNA inverse folding problem (Hofacker et al., 1994). 
In addition, the method used for that RNA design must complete the 
task in a reasonable amount of time.
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A first approach to this problem would be to solve it by brute 
force (Churkin et al., 2018), although with an unapproachable growing 
complexity of 4𝑛 (being 𝑛 the length of the target structure). A closer 
inspection of the problem allows us to reduce this complexity, since the 
paired positions have to form the aforementioned Watson–Crick and 
wobble base pairs. Therefore, the number of valid sequences will be 
6

𝑝
2 4𝑢. As an example, in dot-bracket notation (dots symbolize unbound 
sites and opening and closing brackets base-pairs) we show a 17-
nucleotides-long tiny structure that is composed of 𝑝 = 10 and 𝑢 = 7
paired and unpaired nucleotides (respectively).

((....))(((...)))

The number of RNA-compatible sequences would be ≈ 1.3 ⋅ 108. As 
we can see, despite this reduction in complexity, we need to find better 
ways to deal with the RNA inverse folding problem than brute force.

Evolutionary algorithms have been employed in various fields, be-
ing especially applicable to optimization, scheduling, planning, de-
sign, and management problems. As indicated in Slowik and Kwas-
nicka (2020) the main areas of application are: Engineering electrical 
electronics, Computer science artificial intelligence, Computer science 
theory methods, Computer science interdisciplinary applications, Au-
tomation control system, Computer science information systems, and 
Operations research management science. Since RNA inverse folding 
can be understood as an optimization problem, it is a good candidate 
to be solved by means of EA, so, as we will see below and in the next 
Section, some methods based on them have already been developed.

In a previous publication, we presented the RNA inverse folding 
method m2dRNAs (Rubio-Largo et al., 2019), a Multiobjective Op-
timization Evolutionary Algorithm (MOEA). This algorithm is based 
on an innovative definition of the RNA inverse folding problem as 
a Multiobjective Optimization Problem (MOOP). Starting from that 
formulation, we explore in this paper the effect of some specific modi-
fications applied to the MOEA. Since the MOOP is the same and certain 
features of the MOEA remain unchanged, some theoretical explanations 
are very similar to those presented in Rubio-Largo et al. (2019). How-
ever, they are included here again to provide a complete theoretical 
framework. In addition, some of them have been expanded and/or 
reorganized, and new and more extensive examples are provided.

As main contributions of this work we can mention:

• A wide explanation of our formulation of the RNA inverse fold-
ing problem as a Multiobjective Optimization Problem, objective 
functions to be minimized, constraint, and chromosome represen-
tation, with extensive examples for a better understanding.

• Description of the elements studied: multiobjective evolution-
ary algorithms (NSGA-II, SMS-EMOA, NSGA-III, and C-TAEA), 
crossover operators (Simulated Binary, Differential Evolution, 
One-Point, Two-Point, K-Point, and Exponential), selection op-
erators (Random and Tournament), and the mutation operator 
Polynomial.

• A comparative study of the performance of the 48 possible com-
binations of algorithms + operators applied to solve the RFAM 
benchmark set, together with an extensive set of tables, box-
plots and convergence graphs highlighting the different features 
studied.

• From the previous point, identification of some characteristics 
on the behavior of the different elements studied and those that 
perform better and worse.

• An objective ranking of the 48 combinations studied, calculated 
on the basis of the results of the performance indicators, which 
makes it possible to determine which is the best.
2 
2. State of the art

The first RNA inverse folding algorithm was developed in 1994 (Ho-
facker et al., 1994). Subsequently, it was followed by a series of 
methods to solve the RNA design problem, based on many different 
points of view. The period from 1994 to 2016 was reviewed in Rubio-
Largo et al. (2019), based on which we make here a brief summary 
of the tools published: RNAinverse (Hofacker et al., 1994) utilizes an 
adaptive random walk to minimize the Hamming distance between 
the target structure and the Minimum Free Energy (MFE) secondary 
structure of the candidate RNA sequence; RNA secondary structure 
designer (RNA-SSD) (Andronescu et al., 2004) makes use of a stochastic 
local search after selecting an initial RNA sequence by means of a 
greedy initialization; an algorithm for the INverse FOlding of RNA 
(INFO-RNA) (Busch and Backofen, 2006) comprises two fundamental 
stages: one employing a dynamic programming approach to generate 
favorable initial sequences, followed by an enhanced stochastic local 
search; Multiobjective design of nucleic acids (MODENA) (Taneda, 
2010, 2012, 2015) is based on the Non-Dominated Sorting Genetic 
Algorithm (NSGA-II) and the objective functions structure stability and 
similarity; The NUPACK software suite (Zadeh et al., 2010b,a), contains 
an RNA designer with resemblant features to the approach of RNA-SSD; 
fRNAkenstein (Lyngsø et al., 2012) is a genetic algorithm designed to 
solve the multitarget variant of the problem, which means simultane-
ously discovering one or multiple target structures; DSS-Opt, dynamics 
in sequence space optimization algorithm (Matthies et al., 2012) uti-
lizes Newtonian dynamics within the sequence space, incorporating a 
negative design factor and applying simulated annealing to optimize a 
sequence’s folding into the target structure; RNAiFOLD (García-Martín 
et al., 2013; García-Martín et al., 2015) is based on constraint program-
ming; The EteRNA ensemble algorithm (Lee et al., 2014) is a folding 
method derived from the collective strategies employed by tens of thou-
sands of EteRNA players and other RNA design software; Evolutionary 
RNA design (ERD) (Esmaili-Taheri et al., 2014; Esmaili-Taheri and 
Ganjtabesh, 2015) constructs an initial RNA sequence compatible with 
the specified target structure starting from pools of various components 
of varying lengths. Subsequently, it employs an evolutionary algorithm 
to enhance the quality of the subsequence segments corresponding to 
these components; Finally, antaRNA (Kleinkauf et al., 2015b,a) is a 
colony optimization algorithm that designs RNA structures managing 
multiple constraints.

Since then new tools have been published, from new and already 
proposed points of view. SIMARD (Erhan et al., 2016; Sav et al., 2016), 
which is based on the simulated annealing paradigm and makes use 
of Hamming distance and free energy to determine the fitness of a 
candidate sequence, has been extended in several publications. Dy-
namic Exploration Strategy (DES) (Hampson and Tsang, 2018) permits 
SIMARD to explore a broader scope of RNA sequences with minimal 
runtime cost, as it increases the number of mutations between evalua-
tions (folding, computationally costly). In McBride and Tsang (2020), 
the performance of the adaptive AARTs, non-adaptive geometric, lin-
ear, and logarithmic simulated annealing cooling schedules is compared 
and analyzed on SIMARD. Finally, SIMARD-LinearFold (McBride and 
Tsang, 2021) tries to avoid the limiting problem of the long execution 
time of commonly used folding algorithms (which is due to the ex-
ponential number of possible folds) by integrating a technique called 
LinearFold into SIMARD. LinearFold is an approximate RNA folding 
algorithm, the first to run in linear time, that utilizes concepts drawn 
from context-free parsers from natural language processing and beam 
search techniques (Huang et al., 2019).

MoiRNAiFold (Minuesa et al., 2021) is an enhanced version of 
RNAiFold (García-Martín et al., 2013; García-Martín et al., 2015) that 
incorporates new modeling concepts, design constraints and quality 
measures necessary to design complex functional ncRNAs, as well as 
new heuristics and restart strategies designed for Large Neighborhood 
Search.
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Some attempts have been made to apply the moves and strategies 
of participants in the EteRNA (Lee et al., 2014) RNA design game to 
improve automated computational RNA design using machine learning 
methods. SentRNA (Shi et al., 2018) comprises a fully-connected Neural 
Network (NN) that has been trained on solutions submitted by players, 
combined with an adaptive walk algorithm that integrates straightfor-
ward human design strategies to refine the initial solution sequence 
predicted by the NN. In Koodli et al. (2019) the authors trained a 
Convolutional NN (CNN) architecture using 30,477 moves from the best 
72 players on a selected collection of complex puzzles. As a means 
of correcting some errors in the series of CNN movements located 
by visual inspection, a Single-Action-Playout (SAP) of six canonical 
strategies gathered by human players was added to the pipeline, leading 
to the EternaBrain-SAP method.

The Monte Carlo Search algorithms were introduced by MCTS-
RNA (Yang et al., 2017). This method is based on a Monte Carlo Tree 
Search (MCTS) together with a Hamming distance-dependent reward 
function between the target and predicted secondary structures. Both 
are applied to find the set of essential bases that determines the sec-
ondary structure. More recently, in Cazenave and Fournier (2021) the 
authors adapt and evaluate different Monte Carlo Search algorithms. 
The first algorithm is the Nested Rollout Policy Adaptation (NRPA), 
that is an MCTS based recursive algorithm with adaptive rollout policy. 
A score function that combines the fitness of the base chain with the 
target structure and the dissimilitude between the target structure and 
the folded chain structure is used to evaluate candidate solutions. Other 
algorithms studied are the generalized NRPA (GNRPA) with restarts, 
the stabilized GNRPA and the beam GNRPA.

Reinforcement Learning (RL) defines a problem from the point of 
view of an agent (a NN) interacting with an environment. Two methods 
have been developed that apply it to design RNA sequences. In Eastman 
et al. (2018), where the NN is made of convolutional layers, the actions 
of the agent modify one by one the type of the single bases or base pairs 
of a candidate sequence, whereas LEARNA’s (Runge et al., 2019) policy 
network sequentially designs an entire RNA sequence, locally adapts it 
and uses the Hamming distance of the result to the target structure as 
an error indication for the RL agent. Moreover, meta-learning on a great 
corpus of biological RNA sequences was applied to obtain the extension 
Meta-LEARNA, which creates a unique RNA design policy that can be 
executed in one go to solve novel RNA Design tasks. Along the training 
process, the architecture of the policy network was optimized.

Still in the field of machine learning, Yan et al. (2021)’s proposal 
is a graph-based deep generative approach to simultaneously embed 
and generate RNA sequences and structures, together with three in-
terrelated benchmark tasks for RNA representation and generation: 
Unsupervised generation, semi-supervised learning and targeted gen-
eration. Three generative models are presented and evaluated, which 
are based on the variational autoencoder (VAE) framework.

There are also less conventional proposed methods. The contribu-
tion of Bellaousov et al. (2018) was to build RNA sequence databases 
of pre-selected helices and loops that could be used to accelerate RNA 
design using state-of-the-art inverse folding methods. To guide the 
selection of the set of helices, their thermodynamic features in natural 
RNA structures were used. Moreover, sequences in both databases 
were selected to minimize cross-hybridization. RNARedPrint (Hammer 
et al., 2019) is a method for multi-target RNA design. Sequences are 
designed while targeting specific complex features: free energies of 
multiple target structures and GC-content. This method couples a Fixed-
Parameter Tractable (FPT) sampling algorithm with multidimensional 
Boltzmann sampling across distributions regulated by expressive RNA 
energy models. It can be used both to generate a series of sequences 
that fit specific target values within configurable tolerances, and to 
generate high quality seed sequences proper for starting RNA inverse 
folding methods. Finally, RNAPOND (Yao et al., 2021) incorporates 
positive and negative design objectives and is powered by a FPT 
algorithm for sequence sampling. It focuses on iteratively identifying 
3 
recurring Disruptive Base Pairs (DBPs) and preventing their appearance 
in following rounds by incorporating suitable constraints. DBPs are base 
pairs and structural motifs prone to interfere with the desired folding 
of candidate sequences generated from positive design principles.

In addition to the formerly presented MODENA, fRNAkenstein and 
ERD algorithms, more Evolutionary Algorithms (EA) have been in-
troduced. In m2dRNAs Rubio-Largo et al. (2019) the RNA inverse 
folding problem is formulated as a multiobjective optimization prob-
lem. Therefore, a MOEA is applied to solve it. The similarity between 
target and predicted structures is considered a constraint, and three 
objective functions are optimized simultaneously: (1) partition func-
tion (free energy of the ensemble) (McCaskill, 1990); (2) ensemble 
diversity (Lorenz et al., 2016); and (3) nucleotides composition. The 
chromosome encoding of the individual is a real-valued vector of length 
|𝐵|+|𝑈 |, being 𝐵 and 𝑈 the sets of positions of base-pairs and unpaired 
nucleotides respectively.

MCROiRNA (Afnan et al., 2020) is a multiobjective metaheuristic 
algorithm adapted from Chemical Reaction Optimization (CRO) which 
adds non-dominated sorting and has an algorithmic scheme similar to 
NSGA-II (Deb et al., 2002). The objective functions and similarity as 
a constraint were taken from Rubio-Largo et al. (2019), the authors 
state. A novel operator called Repair Function was included in the CRO 
operators to remove invalid RNA sequences from the solution space, 
and the conventional ones were redesigned.

aRNAque (Merleau and Smerlak, 2021) is an evolutionary algorithm 
with three objective functions to minimize: Hamming distance from the 
target structure, Normalized Energy Distance (NED), and Ensemble De-
fect (ED). Local mutations step depends on the nucleotide and canonical 
base pair probability distribution. Instead of combining the objective 
functions to form a multi-objective function, they are used separately 
at different levels. NED and Hamming distance are used as selection 
weights for the sequences that will be mutated, and to choose ten best 
sequences that will always move to the next generation, respectively. 
Hence, the selection method is roulette wheel selection (Lipowski and 
Lipowska, 2012) (fitness proportionate selection). ED is used to walk 
through the neutral network of the first found sequence that folds into 
the given target by minimizing it. An updated version of aRNAque 
can be found in Merleau and Smerlak (2022). It applies a Lévy flight 
mutation scheme (Mandelbrot, 1963), which are random walks char-
acterized by a step size distribution that exhibits a heavy tail. Such 
a scheme allows exploration at different scales (local search coupled 
with occasional big jumps). The distribution of the number of point 
mutations at every step is taken to follow a Zipf distribution (Newman, 
2005).

eM2dRNAs: Enhanced Multiobjective Metaheuristic for RNA Se-
quence Design (Rubio-Largo et al., 2023) extends the previously men-
tioned m2dRNAs. The key enhancement involves decomposing the 
target structure into smaller, more manageable substructures through 
a recursive process. These smaller substructures simplify the problem-
solving process compared to the original structure. The decomposition 
generates a directed acyclic graph that captures the dependencies 
between the substructures. Each substructure is solved independently 
using an adapted version of m2dRNAs, and the results are then in-
tegrated to form a complete sequence solution. Furthermore, since 
the recursive decomposition employed by eM2dRNAs does not al-
ways produce an optimal dependency graph, an Evolutionary Strategy 
(ES) was subsequently integrated to optimize the decomposition pro-
cess and improve the performance of the core MOEA, resulting in 
ES+eM2dRNAs (Rubio-Largo et al., 2024).

GREED-RNA (Lozano-García et al., 2024) is based on a simple 
greedy evolutionary strategy. Its main feature is the use of several 
dynamically adapting objective functions, such as base-pair distance, 
Hamming distance, probability over ensemble, partition function, en-
semble defect, and GC-content. The weights of these objectives are 
adjusted according to the state of the algorithm, which changes as 
the process progresses. The algorithm incorporates greedy initialization 
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and mutation steps to facilitate the generation of sequences that fold 
into the target structure. To expand the search space and avoid local 
minima, the mutation mode switches to random when stagnation is 
detected. In addition, GREED-RNA allows specifying a range of GC 
content for solution sequences, providing greater flexibility in sequence 
design.

An innovative optimization paradigm is Structure-Aware Multifron-
tier Ensemble Optimization (SAMFEO) (Zhou et al., 2023) optimizes 
either the equilibrium probability or the ensemble defect through an 
iterative multifrontier search process. This approach generates a diverse 
set of valid RNA sequences, including both MFE and unique MFE solu-
tions, as byproducts. The optimization process begins with a targeted 
initialization, followed by iterative sampling, structured mutation, and 
updating. Throughout these phases, both structural and ensemble-level 
information are utilized.

As seen throughout this review, different functions can be used in 
RNA design to evaluate the quality of the results. A comparative study 
of the performance of some of them can be found in Ward et al. (2023).

3. RNA inverse folding problem

The Gibbs free energy model approximates the free energy of 
an RNA molecule by presuming that the energy of the full three-
dimensional structure only depends on the secondary structure. More-
over, this spin can be decomposed into a sum of independent contribu-
tions from each loop of the secondary structure (Lyngsø, 2008b).

The RNA inverse folding problem consists in identifying an RNA 
sequence 𝑥 of nucleotides that would fold into a specific RNA secondary 
structure 𝑆.  Schnall-Levin et al. (2008) proved the NP-hardness of the 
RNA secondary structure design problem.

Let 𝑥 represent an RNA sequence of 𝑛 nucleotides (𝐴,𝐶,𝐺,𝑈) (Lyn-
gsø, 2008b). A base pair between bases 𝑥𝑖 and 𝑥𝑗 , where 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, 
is defined as 𝑖 ⋅ 𝑗. A secondary structure for an RNA sequence 𝑥 is a set 
of base pairs 𝑆 = {𝑖 ⋅ 𝑗|1 ≤ 𝑖 < 𝑗 ≤ 𝑛 ∧ 𝑖 < 𝑗 − 3}. For all base pairs 
𝑖1 ⋅ 𝑗1, 𝑖2 ⋅ 𝑗2 ∈ 𝑆 with 𝑖1 ⋅ 𝑗1 ≠ 𝑖2 ⋅ 𝑗2:

1. {𝑖1, 𝑗1} ∩ {𝑖2, 𝑗2} = ∅;
2. {𝑥𝑖1 , 𝑥𝑗1} ∈ {{𝐴,𝑈}, {𝑈,𝐴}, {𝐶,𝐺}, {𝐺,𝐶}, {𝑈,𝐺}, {𝐺,𝑈}}, i.e.,
only canonical Watson–Crick and wobble base pairs are allowed.

3. 𝑖1 < 𝑖2 < 𝑗1 < 𝑗2 (meaning crossed base pairs are not allowed).

As we defined in Rubio-Largo et al. (2019), the RNA inverse folding 
problem can be formulated as a Multiobjective Optimization Problem 
(MOOP) (Collette and Siarry, 2004), whose objective is to optimize 
three objective functions at the same time. These functions are:

1. Partition Function (𝑓1) (McCaskill, 1990): As exposed in Hofacker 
(2003), optimization through this function generates sequences 
with an intense preference for the target structure. The partition 
function for the set of all possible secondary structures of a given 
RNA sequence 𝑥 can be calculated as in Eq.  (1): 

𝑓1(𝑥) =
∑

𝑆𝜖𝑆′(𝑥)
𝑒
−𝛥𝐺(𝑆)
𝑅𝑇 (1)

where −𝛥𝐺 denotes the Gibbs’ free energy change, 𝑅 represents 
the universal gas constant, 𝑇  is for absolute temperature (37 ◦C), 
and 𝑆′(𝑥) is the batch of all possible secondary structures, over 
which the summation is performed. A complete definition can 
be found in Lyngsø (2008a).

2. Ensemble Diversity (𝑓2) (Lorenz et al., 2016): This function is a 
recognized measure of the reliability of a prediction. This metric 
essentially represents the average base pair distance (number 
of pairs present in one, but not both structures) between all 
structures in the Boltzmann ensemble, which is the simplest 
distance measure between two structures, and can be expressed 
in terms of base pair probabilities 𝑝𝑖𝑗 as it is shown in Eq.  (2): 

𝑓2(𝑥) =
∑

𝑝𝑖𝑗 ⋅ (1 − 𝑝𝑖𝑗 ) (2)

(𝑖,𝑗)𝜖𝑥

4 
For a detailed mathematical formulation of the ensemble diver-
sity, please refer to Lorenz et al. (2016). This type of information 
is crucial to deal with uncertainty in prediction (Lorenz et al., 
2016). Moreover, ensemble diversity is also recommended in the 
literature (Wilm et al., 2008) for long RNA sequences.

3. Nucleotides Composition (𝑓3): With the objective of obtaining 
diversity in the set of solutions, this function helps to avoid 
strong biases in the composition of the designed sequences. From 
the designed RNA sequence 𝑥, its composition is studied in terms 
of: (1) base-pairs percentages (%𝐺𝐶: 𝐺𝐶∕𝐶𝐺, %𝐴𝑈 : 𝐴𝑈∕𝑈𝐴, 
and %𝐺𝑈 : 𝐺𝑈∕𝑈𝐺), (2) unpaired bases percentages (%𝑢𝐴, %𝑢𝐶, 
%𝑢𝐺, and %𝑢𝑈), and (3) total bases distribution (%𝐴, %𝐶, %𝐺, 
and %𝑈). The first category shows the distribution of the three 
types of base pairs along the paired positions in the target struc-
ture, the second category shows the nucleotides distribution in 
unpaired positions of the target structure, and the last category 
shows the total nucleotides distribution in the entire designed 
sequence. Based on these categories, the nucleotides composition 
objective function is calculated as shown in Eq.  (3):
𝑓3(𝑥) = max{%𝐺𝐶,%𝐴𝑈,%𝑈𝐺}

+ max{%𝑢𝐴,%𝑢𝐶,%𝑢𝐺,%𝑢𝑈}

+ max{%𝐴,%𝐶,%𝐺,%𝑈} (3)

For each category (base-pairs, unpaired, and total), the maxi-
mum percentage is acquired. Since 𝑓3 is to be minimized, well-
balanced RNA sequences are designed in terms of nucleotide 
composition.

In this analysis, to calculate 𝑓1 and 𝑓2, the ViennaRNA package 2 
(v2.5.1) (python library) (Lorenz et al., 2011) was utilized.

As we stated in Rubio-Largo et al. (2019), a mandatory constraint 
for each designed RNA is defined: Similarity (𝜎) (Taneda, 2012): It 
evaluates the similitude between the predicted structure of 𝑥 and the 
target structure. To calculate this, Eq.  (4) can be used: 

𝜎(𝑥) = 𝑛 − 𝑑
𝑛

(4)

where 𝑛 is the length of 𝑥, and 𝑑 the number of nucleotide positions 
whose structure in the designed sequence do not correspond with that 
in the target structure. If 𝜎(𝑥) = 1 the predicted and the target structures 
are identical.

Unlike other MOEAs, in our proposal similarity to the target struc-
ture is defined as a constraint rather than an objective function. Forcing 
the similarity to be equal to 1 guarantees that the solutions offered by 
the algorithm fold into the same structure as the target structure, which 
is not the case in other algorithms where it is not a constraint. Thus, 
it is designed to maintain structural similarity while optimizing struc-
tural stability (optimize the frequency of the target structure within 
the thermodynamic ensemble), prediction reliability, and nucleotide 
composition. This approach not only allows for the generation of stable 
RNA sequences, but also provides reliable structure predictions while 
minimizing compositional biases. The objective functions are tailored 
to capture the key features of an optimal solution, so the solutions 
should perform well for other objectives.

4. Multiobjective metaheuristics

4.1. Multiobjective optimization

The RNA inverse folding problem may be formulated as a MOOP 
with 3 objective functions for minimization (Rubio-Largo et al., 2019):
minimize 𝐹 (𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥))

where 𝑥 is the vector of variables in the set 𝛺, 𝐹 ∶ 𝛺 → 𝑌 ⊂ 𝑅3 is a 
vector of 3 objective functions, and 𝑌  is the objective space. For the case 
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of the RNA inverse folding problem, it is needed to add the following 
clauses to the previously defined function 𝐹 (𝑥) to minimize:
subject to 𝜎(𝑥) = 1

𝑥 ∈ 𝛺

In this problem, a solution 𝑥 is a succession of letters within an RNA 
molecule (𝐴,𝐶,𝐺,𝑈 ) ∶ 𝑥 = {𝑥1,… , 𝑥𝑛}. The solution 𝑥 must satisfy 
𝜎(𝑥) = 1. All the feasible values (𝐴,𝐶,𝐺,𝑈 ) of each component of 𝑥
compose 𝛺 (decision space), which includes all RNA sequences of length 
𝑛, i.e., |𝛺| = 6

𝑝
2 4𝑢. For each solution 𝑥 = {𝑥1,… , 𝑥𝑛} in the decision 

space, there is a corresponding point 𝑦 = {𝑦1, 𝑦2, 𝑦3} in the objective 
space.

In multiobjective optimization, one requirement is to have an objec-
tive metric to decide which solution is better than the others. To that 
end, two solutions will be compared using the criterion of dominance. 
A solution 𝑥1 dominates other solution 𝑥2, if and only if the following 
conditions are accomplished:

1. 𝑓𝑖(𝑥1) ≤ 𝑓𝑖(𝑥2) for all 𝑖 ∈ {1, 2, 3} (the solution 𝑥1 is no worse 
than 𝑥2 in any objective function).

2. 𝑓𝑖(𝑥1) < 𝑓𝑖(𝑥2) for at least one index 𝑖 ∈ {1, 2, 3} (the solution 𝑥1
is strictly better than 𝑥2 in at least one objective function).

A solution 𝑥∗ is denominated as Pareto-optimal or non-dominated 
solution if no solution in the set of solutions 𝑃  dominates 𝑥∗. The 
ensemble of all non-dominated solutions in 𝑃  is named as Pareto-optimal 
set or simply Pareto set, and its graphical representation as Pareto front.

We offer a comprehensive example to illustrate our definition of the 
RNA inverse folding problem as a MOOP. The structure for which it 
would be desired to solve this problem will be:
𝑆 = ((....))(((...)))

in dot-bracket notation.
For this target structure we consider five candidate sequences (ob-

viously they must be of the same length as 𝑆):
𝑥1 = GGGGGACCGCCGUGGGC
𝑥2 = GGGAAACCGGGAAACCC
𝑥3 = GCGACAGCGGGAAACCC
𝑥4 = GGGAAACCGGGAAACUC
𝑥5 = GCGGGACCGCCGUGGGC

Since we have defined a constraint, the starting point is to check 
whether the candidate sequences meet it. For this purpose, it is neces-
sary to obtain their predicted secondary structures and then calculate 
their similarities against 𝑆. For the first requirement in this paper we 
use RNAfold from the ViennaRNA package:
𝑥1 ⟹ ((....))(((...)))
𝑥2 ⟹ ((....))(((...)))
𝑥3 ⟹ ((....))(((...)))
𝑥4 ⟹ ((....)).........
𝑥5 ⟹ ((((.....))))....

A simple visual inspection allows us to see that only 𝑥1, 𝑥2 and 𝑥3
have the same secondary structure as 𝑆, thus satisfying the constraint. 
Still, we will show the calculations of similarity. Nucleotide positions 
whose category (base-pairs or unpaired) do not correspond between the 
predicted and the target structures are highlighted in red: 
𝑥1, 𝑥2, 𝑥3 ⟹ ((....))(((...)))

𝑥4 ⟹ ((....)).........
𝑥5 ⟹ ((((.....))))....

 then:
𝜎(𝑥 ) = 𝜎(𝑥 ) = 𝜎(𝑥 ) = 17 − 0 = 1
1 2 3 17

5 
𝜎(𝑥4) =
17 − 6
17

≠ 1

𝜎(𝑥5) =
17 − 12

17
≠ 1

In Fig.  1, we show the target structure 𝑆 and the predicted sec-
ondary structures for the RNA sequences considered (displayed by 
Forna Kerpedjiev et al., 2015).

Considering that the constraint is mandatory, 𝑥4 and 𝑥5 are dis-
carded as candidate sequences. Thus, the objective functions are cal-
culated only for 𝑥1, 𝑥2 and 𝑥3. This is achieved by means of the Vien-
naRNA package for Partition Function(𝑓1) and Ensemble Diversity(𝑓2), 
obtaining the following values:
𝑓1(𝑥1) = −3.74

𝑓1(𝑥2) = −3.84

𝑓1(𝑥3) = −3.73

𝑓2(𝑥1) = 2.90

𝑓2(𝑥2) = 2.94

𝑓2(𝑥3) = 2.72

To evaluate Nucleotides Composition(𝑓3) of the candidate
sequences, the percentages composition of the three categories men-
tioned in Section 3 (base-pairs, unpaired and total) is calculated, and 
the maximums % are located. 𝑆 has 5 base-pairs, 7 unpaired bases and 
17 total bases. For 𝑥1:
Base-pairs⟹ GC,GC,GC,CG,CG
Unpaired⟹ G,G,G,A,G,U,G

Total⟹ G,G,G,G,G,A,C,C,G,C,C,G,U,G,G,G,C

from which the percentages are derived (maximums bolded):
Base-pairs⟹ %𝐆𝐂 = 𝟏𝟎𝟎,%𝐴𝑈 = 0,%𝐺𝑈 = 0

Unpaired⟹ %𝑢𝐴 = 14.29,%𝑢𝐶 = 0,%𝐮𝐆 = 𝟕𝟏.𝟒𝟑,%𝑢𝑈 = 14.29

Total⟹ %𝐴 = 5.88,%𝐶 = 29.41,%𝐆 = 𝟓𝟖.𝟖𝟐,%𝑈 = 5.88

and the 𝑓3 value is:
𝑓3(𝑥1) = 100 + 71.43 + 58.82 = 230.25

Similarly, for 𝑥2:
Base-pairs⟹ GC,GC,GC,GC,GC
Unpaired⟹ G,A,A,A,A,A,A

Total⟹ G,G,G,A,A,A,C,C,G,G,G,A,A,A,C,C,C

To show an alternative method to obtain 𝑓3, instead of calculating all 
the percentages now we count all items in each category (maximums 
in bold):
Base-pairs⟹ 𝐆𝐂∕𝐂𝐆 = 𝟓, 𝐴𝑈∕𝑈𝐴 = 0, 𝐺𝑈∕𝑈𝐺 = 0

Unpaired⟹ 𝐮𝐀 = 𝟔, 𝑢𝐶 = 0, 𝑢𝐺 = 1, 𝑢𝑈 = 0

Total⟹ 𝐀 = 𝟔, 𝐶 = 5,𝐆 = 𝟔, 𝑈 = 0

from which the maximums percentages are directly derived, and the 𝑓3
value calculated:
𝑓3(𝑥2) = 100 + 85.71 + 35.29 = 221

Following the same steps of either 𝑥1 or 𝑥2 we obtain the value of 
𝑓3 for 𝑥3:
𝑓3(𝑥3) = 100 + 71.43 + 35.29 = 206.72

Now that the values of all the objective functions are computed, it 
is possible to check the dominance. The procedure implies comparing 
candidate sequences by pairs:

• 𝑥1 vs. 𝑥2: 𝑓2(𝑥1) < 𝑓2(𝑥2), but 𝑓1(𝑥1) > 𝑓1(𝑥2) and 𝑓3(𝑥1) > 𝑓3(𝑥2). 
Consequently, neither dominates the other.
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Fig. 1. Target structure 𝑆 (a) and the predicted secondary structure for the RNA sequences 𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 and 𝑥5 (b to f). Sequences 𝑥4 and 𝑥5 do not fit 𝑆. Nucleotides are colored 
according to their position in the linear primary structure. Lower numbered nucleotides are closer to the 5’ end and are colored green. Nucleotides in the middle are colored 
yellow whereas nucleotides near the 3’ end are colored red.
• 𝑥1 vs. 𝑥3: 𝑓1(𝑥1) < 𝑓1(𝑥3) but 𝑓2(𝑥1) > 𝑓2(𝑥3) and 𝑓3(𝑥1) > 𝑓3(𝑥3), 
so there is no dominance.

• 𝑥2 vs. 𝑥3: 𝑓1(𝑥2) < 𝑓1(𝑥3), but 𝑓2(𝑥2) > 𝑓2(𝑥3) and 𝑓3(𝑥2) > 𝑓3(𝑥3). 
Once again neither one dominates the other.

From these results it can be concluded that 𝑥1, 𝑥2 and 𝑥3 is a set of 
non-dominated solutions.

There are many performance indicators to evaluate the quality of 
a given Pareto set in the Multiobjective Optimization domain. In this 
work, we employ the following indicators:

• Hypervolume (HV) (Zitzler and Thiele, 1999) (S-metric), deter-
mines the volume (in objective function space) covered by the 
solutions of a non-dominated set 𝐴 = {𝑎1,… , 𝑎𝑛} with respect 
to a predefined bounding reference point 𝑟 = (𝑟1, 𝑟2, 𝑟3). The 
hypercube ℎ of each member 𝑎𝑖 of set 𝐴 is calculated as ℎ(𝑎𝑖) =
[𝑎𝑖1, 𝑟1]×[𝑎𝑖2, 𝑟2]×[𝑎𝑖3, 𝑟3]. Therefore, the hypervolume 𝐻𝑉  of 𝐴 is 
the union of these |𝐴| hypercubes. As a consequence, overlapping 
hypercubes are only counted once. To calculate this, Eq.  (5) can 
be used: 

𝐻𝑉 (𝐴, 𝑟) = 𝐿

(

|𝐴|
⋃

𝑖=1
ℎ(𝑎𝑖)|𝑎𝑖 ∈ 𝐴

)

(5)

being 𝐿 the Lebesgue measure.
• Inverted Generational Distance (IGD) (Coello and Sierra, 2004). 
It was introduced as an advancement over the Generational Dis-
tance (GD) metric by flipping the order of the fronts used as input. 
GD is defined as the distance between each objective vector in 
a given approximation front 𝐴 (solution points) and the closest 
objective vector in a reference front 𝑅, which may be the true 
Pareto front or a highly accurate estimation of it, averaged over 
the size of 𝐴. Hence, 𝐼𝐺𝐷(𝐴,𝑅) = 𝐺𝐷(𝑅,𝐴). This means that IGD 
is essentially the same as GD, but with the distances between each 
objective vector at the reference front and its closest counterpart 
at the approximation front averaged over the size of the reference 
front.

4.2. Chromosome representation

The selection of the chromosome encoding of individuals has signif-
icant impact on the implementation of the algorithm, as it determines 
how the RNA inverse folding problem is structured within the algo-
rithm, as well as the behavior of the evolutionary algorithm, which 
limits the operators that can be applied to the chromosome. For this 
study, we use the same encoding as in Rubio-Largo et al. (2019), since 
it permits to apply any crossover and mutation operators for continuous 
optimization problems.
6 
The representation of the chromosome 𝑋 was designed as a real-
valued vector of length |𝐵| + |𝑈 |, being 𝐵 and 𝑈 the sets of positions in 
the target structure 𝑆 of the base-pairs or unpaired bases respectively.
𝑋 = {𝜌1,… , 𝜌

|𝐵|, 𝜌|𝐵|+1,… , 𝜌
|𝐵|+|𝑈 |

}

where 𝜌 is a real value in the range [0,1] that codifies the type of base-
pair or unpaired nucleotide. The |𝐵| first elements store the 𝜌 values of 
the base-pairs, whereas from |𝐵|+1 to |𝐵|+|𝑈 | are 𝜌 values of unpaired 
positions.

To obtain 𝐵 and 𝑈 , the target structure 𝑆 in dot-bracket notation is 
processed as follows:

1. 𝑆 is traversed iteratively from the first to the last position.
2. Whether the considered position is unpaired (dot "’’.), it is stored 
in 𝑈 .

3. On the contrary, if it is the first position of a base-pair (opening 
bracket ‘‘(’’) it is saved. The walk continues until the second 
position of the base-pair (closing bracket ‘‘)’’) is found, when 
they are both stored in 𝐵.

4. The positions visited while searching for the corresponding clos-
ing bracket are processed the same way, that is, storing it in 𝑈
if is an unpaired position, or saving it until its matching closing 
bracket is found (when they both will be stored in 𝐵) if is an 
opening bracket.

With this chromosome encoding, it is mandatory to have a proce-
dure to translate a real-valued input chromosome (𝑋) into an RNA 
sequence (𝑥) The translated RNA sequence is the element that will 
actually be evaluated to verify if it fulfills the similarity constraint and 
to calculate its objective functions. In Rubio-Largo et al. (2019), we 
defined the following procedure:

1. 𝑋 is traversed iteratively from the first to the last element.
2. The |𝐵| first elements correspond to base-pairs. Therefore, for 
the element being considered, from 𝐵 the positions in 𝑆 (and 
consequently in the RNA sequence 𝑥 being constructed) of both 
components of the base-pair are obtained.

3. The 𝜌 value is translated as a base-pair:

• GC if 0 ≤ 𝜌 < 1∕6
• CG if 1∕6 ≤ 𝜌 < 2∕6
• AU if 2∕6 ≤ 𝜌 < 3∕6
• UA if 3∕6 ≤ 𝜌 < 4∕6
• GU if 4∕6 ≤ 𝜌 < 5∕6
• UG if 5∕6 ≤ 𝜌 ≤ 1

4. The base-pair nucleotides are placed in the positions obtained in 
step 3.
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Fig. 2. Boxplots of final HV values obtained with all alg+oper combinations for a selection of RFAM structures. Note that the color code used refers to the different algorithms 
used, specifically: ■ C-TAEA, ■ NSGA-III, ■ NSGA-II, ■ SMS-EMOA.
5. The remaining |𝑈 | elements correspond to unpaired nucleotides. 
Therefore, for the element being considered, from 𝑈 the po-
sition in 𝑆 (and consequently in the RNA sequence 𝑥 being 
constructed) is obtained.

6. The 𝜌 value is translated as a nucleotide:

• C if 0 ≤ 𝜌 < 1∕4
• G if 1∕4 ≤ 𝜌 < 2∕4
• A if 2∕4 ≤ 𝜌 < 3∕4
• U if 3∕4 ≤ 𝜌 ≤ 1

7. The obtained nucleotide is placed in the position found in step 
5.

Initialization of the individuals in the starting population is con-
ducted in a manner that minimizes the probability of creating unnec-
essary loops in the structure of the new RNA sequence by taking into 
account possible related base-pairs when selecting the nucleotide for 
7 
each unpaired position (𝑈 set). In a small percentage of individuals, 
this initialization is performed completely randomly.

Using this chromosome encoding and initialization of individuals 
ensures a certain level of greediness, which allows finding sequences 
that fold into the target structure faster.

For a better understanding of the proposed representation, we show 
it here applied to our previous example structure 𝑆. To start, positions 
are numbered and 𝐵 and 𝑈 defined.
𝑆 = ((....))(((...)))
= (1(2.3.4.5.6)7)8(9(10(11.12.13.14)15)16)17

𝐵 = {(1, 8), (2, 7), (9, 17), (10, 16), (11, 15)}

𝑈 = {3, 4, 5, 6, 12, 13, 14}

Therefore, in this case the representation of a chromosome will be a 
vector of twelve elements (|𝐵| = 5 + |𝑈 | = 7), where the elements 1 to 
5 encode the paired nucleotides that will be located in the positions 
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Fig. 3. Boxplots of final IGD values obtained with all alg+oper combinations for a selection of RFAM structures. Note that the color code used refers to the different algorithms 
used, specifically: ■ C-TAEA, ■ NSGA-III, ■ NSGA-II, ■ SMS-EMOA.
stored in the 𝐵 set, and the elements 6 to 12 encode the unpaired 
nucleotides that will be located in the positions stored in the 𝑈 set. 
As already stated, their values are real numbers in the range [0,1]. Let 
us suppose that we have the following chromosomes 𝑋1, 𝑋2 and 𝑋3:

𝑋1 = {0.15, 0.10, 0.05, 0.21, 0.32, 0.27, 0.42, 0.48, 0.60, 0.35, 0.91, 0.29}

𝑋2 = {0.02, 0.15, 0.08, 0.02, 0.13, 0.47, 0.51, 0.73, 0.62, 0.51, 0.67, 0.69}

𝑋3 = {0.01, 0.18, 0.16, 0.02, 0.11, 0.30, 0.55, 0.22, 0.71, 0.69, 0.62, 0.74}

We decode them into RNA sequences using the translation process 
explained above. For example, considering the first element of 𝑋1
(0.15), by its position we know that it corresponds to a base-pair. 
Looking for this value in the translation process, as 0 ≤ 0.15 < 1∕6, this 
base pair is going to be GC. The position of these nucleotides in 𝑥1 is 
obtained by looking at the first position of 𝐵, thus obtaining (1,8). So G
will be placed at position 1 and C at position 8 of 𝑥1. Similarly, the ninth 
item in 𝑋1 (0.60) is an unpaired nucleotide, whose position corresponds 
to the fourth element in 𝑈 (6). Checking the values displayed in the 
8 
translation process, as 2∕4 ≤ 0.60 < 3∕4, this nucleotide corresponds to 
an A, to be placed at position 6 of 𝑥1.

By applying the process to whole chromosomes, we obtain the 
sequences 𝑥1, 𝑥2 and 𝑥3 considered in Section 4.1:
𝑥1 = 𝐺1𝐺2𝐺3𝐺4𝐺5𝐴6𝐶7𝐶8𝐺9𝐶10𝐶11𝐺12𝑈13𝐺14𝐺15𝐺16𝐶17

𝑥2 = 𝐺1𝐺2𝐺3𝐴4𝐴5𝐴6𝐶7𝐶8𝐺9𝐺10𝐺11𝐴12𝐴13𝐴14𝐶15𝐶16𝐶17

𝑥3 = 𝐺1𝐶2𝐺3𝐴4𝐶5𝐴6𝐺7𝐶8𝐺9𝐺10𝐺11𝐴12𝐴13𝐴14𝐶15𝐶16𝐶17

4.3. Description of the multiobjective metaheuristics

The aim of this section is to briefly describe the different multiobjec-
tive metaheuristics used in this work to solve the RNA inverse folding 
problem: NSGA-II (used as the core algorithm in m2dRNAs Rubio-Largo 
et al., 2019), SMS-EMOA, NSGA-III, and C-TAEA.

NSGA-II (Deb et al., 2002) is a well-known method that aims to gen-
erate a new offspring population from an existing parent population. 
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Fig. 4. Heat map of average final HV values of RFAM structures. NA values are represented as ■.
For this purpose, traditional genetic operations of selection, crossing 
and mutation are used. This offspring population is combined with the 
parent population to create a new population that is then sorted into 
categories (ranked fronts) based on the dominance relationships estab-
lished between individuals, calculated by applying a non-dominated 
sorting function. Individuals classified as the best first half will become 
the parent population of the next generation. If the individuals of 
a front are to be only partially selected, their crowding distances 
are computed to determine the best ones. This strategy of comparing 
crowding distances (utilized in both tournament selection and popula-
tion reduction stages) allows NSGA-II to incorporate diversity among 
the non-dominant solutions.

SMS-EMOA (S-Metric Selection Evolutionary Multi-Objective Algo-
rithm) (Beume et al., 2007) employs a steady-state algorithm char-
acterized by the utilization of non-dominated sorting as a ranking 
criterion, and the application of HV (S-Metric) to select the individual 
to eliminate, since it will be the one with the lowest HV contribution 
to the lowest-ranked front. Fleischer (2003) demonstrated that within a 
finite search space and with a specified reference point, maximizing the 
HV is tantamount to discovering the Pareto set, so the main idea here 
is to choose potential solutions based on their impact on the dominated 
HV. The SMS-EMOA algorithm was designed to encompass a maximum 
9 
HV using a finite set of points and to mitigate the challenge of selecting 
the appropriate reference point for the HV calculation.

From an initial population comprising 𝜇 individuals, a novel indi-
vidual is created through randomized crossover and mutation opera-
tors. This fresh individual will join the subsequent population solely 
if the substitution of another individual for it results in an improved 
population quality in terms of HV. To this end, non-dominated sorting 
is applied to the 𝜇 + 1 individuals, and the one with the lowest contri-
bution to HV in the worst ranked front is eliminated. Thus, individuals 
that maximize the S-metric value within the population are retained, 
ensuring that the population’s encompassed HV does not decrease as 
the generations advance.

Since calculating HV is computationally expensive, a steady-state 
selection scheme is used. Since only one individual will be removed 
from the population in each generation, the selection operator will 
calculate a maximum of 𝜇 + 1 HV values.

The reference point is dynamically updated during the optimization 
process. In each generation, it is recalculated as a vector of the current 
worst-case target values, incremented by 1.0.

The basic framework of NSGA-III (Deb and Jain, 2014) is sim-
ilar to the original NSGA-II algorithm. To achieve diversity among 
the individuals in the population, NSGA-III uses a predefined set 
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Fig. 5. Heat map of average final IGD values of RFAM structures. NA values are represented as ■.
of well-distributed reference points that are placed on a normalized 
hyper-plane. The selected reference points may either come in a pre-
established structured format or be provided by the user. A commonly 
used method to place reference points is Das and Dennis’s systematic 
approach (Das and Dennis, 1998). This method settles points on a 
normalized hyper-plane that exhibits equal inclination towards all 
objective axes and intersects each axis at a value of one. The total 
number of reference points is determined by the number of objectives 
and the number of divisions considered for each objective.

NSGA-III places a strong emphasis not only on non-dominated solu-
tions but also on population members linked to each reference point. 
As the reference points are broadly distributed throughout the entire 
normalized hyper-plane, the resulting solutions are also expected to be 
widely distributed along or in close proximity to the Pareto-optimal 
front.

The objective functions of the population members are adaptively 
normalized. The method involves first determining the ideal point 
of the population and then identifying the extreme points on each 
objective axis to construct a hyper-plane. This process is performed in 
each generation, employing the extreme points identified from the start 
of the simulation.

In order to link each population member with a reference point, a 
reference line is established for each reference point by connecting it 
10 
to the origin. Subsequently, the perpendicular distance between each 
population member and each of these reference lines is computed. A 
population member is then associated with the reference point whose 
reference line exhibits the closest proximity to the population member 
within the normalized objective space.

To cover all available population positions of the next generation, 
the underrepresented reference directions are prioritized, assigning 
solutions to them first. If no solutions are allocated to a reference 
direction, then the surviving solution is the one with the smallest 
perpendicular distance in the normalized objective space. Whether a 
second solution is added to this reference line, it is randomly assigned.

C-TAEA (Li et al., 2019) is a constraint handling method, without 
parameters, for constrained multiobjective optimization. It simultane-
ously upholds two cooperative and complementary archives, named 
convergence-oriented archive (CA) and diversity-oriented archive (DA). 
The primary attributes of C-TAEA can be described as follows:

1. CA plays a fundamental role in sustaining both the convergence 
and feasibility aspects of the evolutionary process, exerting se-
lection pressure towards the Pareto Front.

2. In contrast, DA mainly focuses on maintaining the convergence 
and diversity of the evolution process, without considering fea-
sibility. The DA explores areas that have not been exploited by 
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Fig. 6. Convergence (HV) plots of all alg+oper combinations for a selection of RFAM 
structures. Note that the color code used refers to the different crossover operators 
used, specifically: ■ 1P, ■ 2P, ■ DE, ■ EXP, ■ KP, and ■ SBX.

the CA. This improves the diversity of the CA population within 
the currently investigated feasible region and helps overcome 
local optima or locally feasible regions, even exploring areas 
considered unfeasible by CA.

3. To take advantage on the complementary effect and valuable 
data contained in these two collaborative archives, a restricted 
mating selection mechanism is implemented. This mechanism 
independently selects suitable parent pairs from the CA and DA, 
taking into account their individual evolutionary statuses.

To facilitate  density estimation, the objective space is divided into 
subregions, each of which is represented by a unique weight vector on 
the canonical simplex. Then each solution of a population is associated 
with a unique subregion.
11 
Fig. 7. Convergence (IGD) plots of all alg+oper combinations for a selection of RFAM 
structures. Note that the color code used refers to the different crossover operators 
used, specifically: ■ 1P, ■ 2P, ■ DE, ■ EXP, ■ KP, and ■ SBX.

Both CA and DA populations are updated by combining them with 
the offspring population (becoming 𝐻𝑐 and 𝐻𝑑 respectively). 𝐻𝑐 prior-
itizes feasible solutions, and makes use of fast non-dominated sorting, 
density information of the subregions and the distance between each 
solution and its nearest neighbor to pick the individuals to construct 
the new CA. If feasible solutions in (𝐻𝑐) do not fill the new CA, the 
number of needed infeasible solutions are selected by means of fast 
non-dominated sorting and Constraint Violation (CV). On the other 
hand, the update mechanism of 𝐻𝑑 possesses two distinctive traits: It 
disregards CV, and employs the most current CA as a reference set, 
thus complementing the CA’s performance by investigating its less-
explored regions. This is achieved by taking into account the density 
estimation of each subregion to decide whether or not a solution is 
going to survive.
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Fig. 8. Convergence (HV) plots of all alg+oper combinations for a selection of RFAM 
structures. Note that the color code used refers to the different selection operators used, 
specifically: ■ R, ■ T.

NSGA-II, NSGA-III, and SMS-EMOA have in common the use of 
non-dominated sorting to categorize individuals into ranked fronts 
after merging the parent and offspring populations, but NSGA-II and 
NSGA-III create an offspring population of the same size as the par-
ent population, while SMS-EMOA generates only one individual as 
offspring. These three metaheuristics differ in the criteria used to 
introduce diversity among members of the same rank and choose which 
individuals will be discarded to form the next generation, as NSGA-
II is based on crowding distance, NSGA-III uses a predefined set of 
well-distributed reference points to which population members are 
associated, and SMS-EMOA relies on HV. Similar to NSGA-III, C-TAEA 
makes use of reference points/vectors to divide the objective space 
into subregions, to which individuals are associated. C-TAEA is also 
the most different of all, since it is based on two archives (CA and 
12 
Fig. 9. Convergence (IGD) plots of all alg+oper combinations for a selection of RFAM 
structures. Note that the color code used refers to the different selection operators used, 
specifically: ■ R, ■ T.

DA) that collaborate with each other and makes use of a restricted 
mating selection mechanism. In this last metaheuristic, diversity is the 
responsibility of the DA, and non-dominated sorting is also involved in 
the algorithm, due to its role in the construction of the next generation 
CA.

4.4. Description of the operators

In this section we take a look at the versions of the classical genetic 
operators selection, crossover and mutation applied to the selected 
metaheuristics.

4.4.1. Selection
Selection operators determine which individuals from a population 

should be chosen to become parents for the next generation. The 



Á. Rubio-Largo et al. Engineering Applications of Artiϧcial Intelligence 157 (2025) 111189 
Fig. 10. Convergence (HV) plots of all alg+oper combinations for a selection of RFAM 
structures. Note that the color code used refers to the different algorithms used, 
specifically: ■ C-TAEA, ■ NSGA-III, ■ NSGA-II, ■ SMS-EMOA.

selection operator is responsible for biasing the selection process to-
wards fitter individuals, in order to improve the overall fitness of the 
population over time.

• Random (RandS). Individuals are randomly selected from the 
current population to be used as parents. The implementation uti-
lized here makes use of a permutation to prevent any individual 
from being chosen more than once.

• Tournament (used by m2dRNAs Rubio-Largo et al., 2019). Tour-
nament pressure is helpful for faster convergence. The process of 
tournament selection starts with the selection of a few individuals 
at random from the population, followed by the running of several 
‘‘tournaments’’ among them. The tournament winner will be the 
one with the best fitness (the specific fitness function varies 
among metaheuristics), which will then be selected for crossover. 
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By altering the tournament size, the selection pressure can be 
adjusted. A larger tournament size reduces the chances of weaker 
individuals being selected as parents, since stronger individuals 
are more likely to be included in the same tournament. In this 
study a binary tournament (two individuals) is always used when 
this operator is selected.

4.4.2. Crossover
The crossover operator takes two or more parent individuals and 

selects one or more points in their chromosomes. The genetic material 
between these points is then exchanged between the parents, resulting 
in new offspring that have a combination of genetic information from 
both parents.

• Simulated Binary (SBX) (used by m2dRNAs Rubio-Largo et al., 
2019). This operator simulates the functioning of the single-
point crossover operator on binary strings but for real-valued 
chromosomes, achieving a similar search power. It makes use of 
a probability distribution to generate new values for each gene in 
the offspring solutions based on the values of the corresponding 
genes in the two parent individuals. This probability distribution 
ensures that the new values are similar to the values of the 
parents, but with some variation to allow for potential improve-
ments. SBX requires a user-selected parameter called distribution 
index (𝜂𝑐), which is a non-negative real number. A large value 
of 𝜂𝑐 gives a higher probability for creating offspring close to 
the parents, whereas a small value of 𝜂𝑐 allows creating distant 
solutions (more diverse search).

• Differential Evolution (DE). It is the crossover operator used 
in Differential Evolution (Storn and Price, 1997) algorithm. In 
this operation, genes either from the target chromosome or a 
previously computed donor chromosome are selected based on 
some probability distribution to form a trial (child) chromosome, 
ensuring that the trial chromosome receives at least one gene 
from the donor chromosome. It is used a Crossover Probability
parameter. The donor is created from randomly selected parental 
solutions from the population, which are combined to generate 
a new candidate solution (donor) by adding a scaled difference 
vector to one of the parents.

• One-Point (1Point). In single-point crossover, a single point is 
randomly selected in the genetic material of each of the two 
parents, and the genetic information is exchanged beyond that 
point.

• Two-Point (2Point). In two-point crossover, two points are ran-
domly selected, and the genetic material between those points is 
exchanged.

• K-Point (KPoint). This method is similar to the two previous, but 
with a fixed and user-defined number of points (𝐾, greater than 
two).

• Exponential (Exp). To begin, a starting index is chosen randomly, 
followed by the inclusion of the subsequent gene to be mutated 
with a predetermined probability (𝑝𝑒𝑥𝑝). In the event that the final 
gene is reached, the process wraps around to the first variable.

4.4.3. Mutation
This operator introduces random changes in the chromosomes of 

individuals in a population. The purpose of the mutation operator is 
to maintain genetic diversity in the population and avoid premature 
convergence towards suboptimal solutions. Mutation is applied with a 
low probability rate to avoid drastic changes that may lead to poor 
solutions.

• Polynomial (PM) (used by m2dRNAs Rubio-Largo et al., 2019). A 
polynomial probability distribution is used to perturb a solution 
in its neighborhood. This mutation operator usually follows the 
common method of attempting to mutate each gene on an indi-
vidual’s chromosome one at a time with a predefined mutation 
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Fig. 11. Convergence (IGD) plots of all alg+oper combinations for a selection of RFAM structures. Note that the color code used refers to the different algorithms used, specifically: 
■ C-TAEA, ■ NSGA-III, ■ NSGA-II, ■ SMS-EMOA.
probability 𝑝𝑚. A random number 𝑢 ∈ [0, 1] is created for each 
gene in the individual. Whether 𝑢 ≤ 𝑝𝑚 the gene is selected to 
be mutated, so a value calculated by a polynomial function is 
added to its current value. The polynomial function determines 
the distribution of the random values to be added to the gene, 
with higher order polynomials leading to more extreme values.

5. Experimental results

The objective of this section is to present a comparative analysis 
of the performance of four selected MOEAs and various parameter 
combinations in addressing the RNA inverse folding problem.
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5.1. Previous considerations

Here we describe the methodology followed in the experimental 
analysis of the MOEAs. We will compare the behavior of the four 
multiobjective metaheuristics explained in Section 4.3 (NSGA-II, SMS-
EMOA, NSGA-III, and C-TAEA) when used to solve the RNA inverse 
folding problem with the RFAM benchmark set (Taneda, 2010), which 
was created from the Rfam 9.0.21 seed alignments and contains a total 
of 29 target structures. In addition, these MOEAs have been tested 
with the different combinations of the appropriate genetic operators 
for real-valued chromosomes selected for this study. Specifically it is 
used:
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• Selection. RandS is applied to all the metaheuristics. Tournament 
is tested with NSGA-II, SMS-EMOA, NSGA-III, and for the case of 
C-TAEA it is used in the context of its restricted mating selection 
mechanism.

• Crossover. All selected crossover operators (SBX, DE, 1Point, 
2Point, KPoint and Exp) were tested with each of the metaheuris-
tics and with the parameter 𝑝𝑐 = 0.9 (probability of a crossover). 
Other parameters are:

– SBX: 𝜂𝑐 = 10
– DE: Crossover constant, 𝐶𝑅 = 0.7
– KPoint: 𝐾 = 4
– Exp: 𝑝𝑒𝑥𝑝 = 0.9

• Mutation. Only PM is selected. Its parameters are 𝜂𝑚 = 5 (dis-
tribution index) and 𝑝𝑚 = 1∕𝑙 (where 𝑙 is the length of the 
chromosome).

For the implementation we have used the framework pymoo: Multi-
objective Optimization in Python (v0.6.1) and ViennaRNA (v2.5.1). The 
experiments were carried out on a 2x Intel(R) Xeon(R) Gold 6238 CPU 
@ 2.10 GHz and 196 GB of RAM with Ubuntu 18.04 and Python 3.7.5, 
running each combination 31 independent times, with population size 
of 52 individuals, a time limit of 25 min and Turner2004 energy 
parameters. From each execution, final and intermediate results (every 
10 s.) were obtained.

To encode the input structure, obtain the length of the chromosome, 
as well as the indices corresponding to the paired and unpaired posi-
tions, we use the process to obtain 𝐵 and 𝑈 described in Section 4.2. 
Following the pymoo interface and meeting its requirements for the 
definition of the chromosome, number of objective functions, and 
equality constraint (similarity), the problem is defined as an Elemen-
twiseProblem, within which the evaluation is performed. For this, the 
chromosome must be translated from a vector of real values to an RNA 
sequence, using the translation process also explained in Section 4.2, 
implemented as an isolated function. To evaluate the sequence, the 
objective functions f1 (Partition Function), f2 (Ensemble Diversity), and 
the similarity are calculated with the help of the ViennaRNA Package.

In Pymoo, functions subject to equality constraints must be defined 
in such a way that, to satisfy the constraint, the function value must 
be 0. Therefore, instead of similarity, dissimilarity is used in the im-
plementation, since a dissimilarity of 0 indicates that the structures 
are identical—just as a similarity value of 1 would. To calculate this 
dissimilarity, the structure chains are compared and the non-matching 
positions are counted. Thus, if the structures are the same, the value 
will be 0.

For the C-TAEA and NSGA-III algorithms, the reference directions 
are created following the structured approach of Das and Dennis with 
n_partitions=8 (number of partitions). For all algorithms, if the selec-
tion operator used is RandS, this is indicated to the algorithm in its 
call, while if it is Tournament no specific parameter is needed, since 
Tournament is the default selection operator for all. The crossover and 
mutation operators are explicitly stated, along with the parameters 
indicated above, also in the algorithm call. Duplicate individuals in the 
population are not eliminated. A Callback object is used to obtain the 
intermediate results. The run number (from 1 to 31) is used as a seed 
for the call to minimize. Any other parameter not specified here uses 
the default value of the pymoo version specified above.

To compare the results of each combination of algorithm + oper-
ators (alg+oper) IGD and HV performance indicators are used (0–1 
normalized). Since a reference Pareto front is needed to calculate IGD, 
an approximation was constructed for each RFAM target structure by 
extracting its non-dominated solutions from all corresponding final 
solution sets.

Furthermore, an objective ranking was computed as follows. For 
each RFAM structure, the calculated average final HV and IGD values 
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Table 1
Reference table to RFAM structures acronyms.
 RFAM dataset Acronym 
 RF00001.121 R01  
 RF00002.2 R02  
 RF00003.94 R03  
 RF00004.126 R04  
 RF00005.1 R05  
 RF00006.1 R06  
 RF00007.20 R07  
 RF00008.11 R08  
 RF00009.115 R09  
 RF00012.15 R12  
 RF00013.139 R13  
 RF00014.2 R14  
 RF00015.101 R15  
 RF00017.90 R17  
 RF00018.2 R18  
 RF00019.115 R19  
 RF00021.10 R21  
 RF00022.1 R22  
 RF00025.12 R25  
 RF00026.1 R26  
 RF00027.7 R27  
 RF00028.1 R28  
 RF00029.107 R29  
 RF00030.30 R30  

were ordered from best to worst. For both indicators, the first to the 
sixth combinations obtained the following scores: 10, 8, 6, 4, 2 and 
1 points. The seventh and subsequent combinations did not score any 
points. The scores corresponding to all the Rfam structures were added 
together to obtain two overall scores, one for HV and the other for IGD. 
Finally, both scores were summed to obtain a total score.

Throughout the text, alg+oper combinations are named according 
to the algorithm and operators used, matching the following structure: 
Algorithm_selection _mutation_crossover. For figures and tables the 
corresponding acronyms are used, which can be found in Tables  1 and
2, thus becoming generically alg-sel-mut-cross.

5.2. RFAM convergence

Five RFAM structures (RF00010.253, RF00011.18, RF00016.15, 
RF00020.107, RF00024.16) were not solved by any alg+oper combi-
nation. Therefore, they were excluded from further analysis, meaning 
that there were 24 RFAM structures left to work with.

Our previously published multiobjective metaheuristic to design 
RNA sequences (m2dRNAs) corresponds to the alg+oper combination 
NSGA-II_ Tournament_PM_SBX, as can be checked in Rubio-Largo et al. 
(2019). Therefore, throughout this discussion we will look at that 
combination to test its performance.

As a first approach to analyzing the behavior and performance of 
the algorithm+operator (alg+oper) combinations, Figs.  2 and 3 show 
boxplots of the final HV and IGD values obtained by each combination, 
allowing their distribution to be easily examined. Each boxplot repre-
sents the results for one RFAM structure. Only a selection is shown here; 
the complete set is available in the supplementary material. Values of 
0 and 1 were assigned to the HV and IGD indicators, respectively, for 
repetitions that did not return results. If none of the repetitions for a 
given combination returned results, the corresponding boxplot is not 
displayed. To aid interpretation, the boxplots are color-coded by algo-
rithm. Additionally, the means of the final and intermediate HV and 
IGD values from the 31 repetitions were computed for each alg+oper 
combination across all RFAM structures, using the same criteria for 
assigning values in cases with no results. This ensured that averages 
were always calculated over 31 values. Figs.  4 and 5 present heat maps 
based on the final mean values of HV and IGD.

At first glance some observations can be made. Along the majority 
of the graphs it can be seen that C-TAEA usually is the worst algorithm, 
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Table 2
Algorithms and operators acronyms reference tables.

 (a) Reference table to crossover operators acronyms
 Crossover operator Acronym  
 One Point (1Point) 1P  
 Two Point (2Point) 2P  
 K Point (KPoint) KP  
 Differential Evolution (DE) DE  
 Exponential (Exp) EXP  
 Simulated Binary (SBX) SBX  

 (b) Reference table to mutation operators acronyms
 Mutation operator Acronym  
 Polynomial (PM) PM or absent  

 (c) Reference table to selection operators acronyms
 Selection operator Acronym  
 Random (RandS) Ran or R  
 Tournament Tour or T  

 (d) Reference table to algorithms acronyms
 Algorithm Acronym  
 Two-archive evolutionary algorithm for constrained C-TAEA, CTAEA or CT  
 multi objective optimization (Li et al., 2019)  
 Non-dominated Sorting Genetic Algorithm III (Deb and Jain, 2014) NSGA-III, NSGA3 or N3  
 Fast Non-dominated Sorting Genetic Algorithm (Deb et al., 2002) NSGA-II, NSGA2 or N2  
 Multiobjective selection based on dominated hypervolume (Beume et al., 2007) SMS-EMOA, SEMOA or SE 
especially in its combination with the Tournament selection operator. 
Exceptions to this observation include the RandS selection operator 
half of RF00009.115, RF00012.15, RF00017.90 and RF00030.30, as 
well as RF00028.1 where the loss of 18 combinations and the high 
diversity of the remaining make difficult to establish comparisons. 
Another observation that can be easily detected is the common lower 
performance of DE when compared to its fellow crossover operator 
partners (using the same algorithm + selection operator), since it is 
always the worst or almost the worst. The exceptions are RF00003.94 
where, leaving aside C-TAEA as it does not return results with it, DE is 
the best crossover operator among its partners, both in median value 
and dispersion. Both effects are more noticeable when using RandS than 
Tournament. For RF00014.2 DE is the worst among its fellows always 
but with SMS-EMOA, where the performance values are very similar. 
Considering RF00012.15, this effect is only seen with HV and IGD 
for CTAEA in combination with RandS, and only with HV for NSGA-
III and SMS-EMOA. In RF00009.115, RF00017.90 and RF00030.30 
DE is clearly the worst among its partners always with C-TAEA, and 
in combination with NSGA-III, NSGA-II and SMS-EMOA when using 
Tournament, but not in their RandS versions. Similar to the previous 
group, for RF00028.1 DE with RandS seems the best combination of 
operators for NSGA-III, NSGA-II and SMS-EMOA, but not for C-TAEA. 
Some boxplots of RFAM structures show a large dispersion of values 
(RF00003.94, RF00028.1 and to a lesser extent RF00030.30 or even 
RF00009.115). This effect is probably due to the higher difficulty of 
these structures, which has a negative impact on the number of repe-
titions solving the problem, thus widening the dispersion. In addition, 
C-TAEA tends to have a larger dispersion than the other algorithms. 
Since it appears worse than them, this is probably showing the same 
effect of fewer repetitions managing to solve the structure. Along the 
RFAM structures NSGA-II_Tournament_PM_SBX boxplot does not show 
any remarkable behavior. Its values are usually in the middle of those 
in the NSGA-II boxplots.

In Tables  3 and 4, the final average HV and IGD values of the 
48 alg+oper combinations are shown. If none of the repetitions of a 
combination returns results, its performance values are represented 
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as ‘‘NA’’. In addition, the best three values of each RFAM structure 
are highlighted and colored. These numerical tables allow for more 
precise comparisons than boxplots and heat maps. As expected, in most 
cases the highlighted values coincide in both tables, but not always. 
They tend to be concentrated in the SMS-EMOA area, which points to 
a better performance of this algorithm. Moreover, the combinations 
with the highest number of outstanding values are both versions of 
SMS-EMOA + Exp, which allows us to suspect that one of them is 
going to be the best combination. In addition, outside of the SMS-
EMOA area there is a positive trend to the crossover operator Exp. 
These last two observations make Exp a solid candidate to be the best 
crossover operator. Inspection of the boxplots allowed us to see that 
C-TAEA tends to be the worst algorithm, but with some exceptions 
including RF00009.115, RF00017.90 and RF00030.30 when using the 
RandS selection operator. When looking at these tables we can realize 
that not only they are not the worst, but in some cases they are 
among the three best: C-TAEA_RandS_PM_1Point (RF00009.115, only 
for HV), C-TAEA_RandS_PM_2Point (RF00009.115 and RF00017.90), C-
TAEA_RandS_PM_SBX (RF00009.115 and RF00030.30) and
C-TAEA_RandS_PM_Exp (RF00017.90). Another observation from the 
boxplots is that for RF00003.94, DE is the best crossover operator 
among its partners (except for C-TAEA, where there are few results), 
this tendency is more pronounced with RandS than with Tournament. 
This can be checked in the tables, and is reflected in the fact that 
the values of the combinations using DE and RandS are highlighted, 
except for SMS-EMOA_RandS_PM_Exp, which ranks third for HV, and 
is closely followed by NSGA-II_RandS_PM_DE (240.5 and 239.6 E-03 
respectively), which is the best among its partners as well (and is third 
when looking at IGD). Surprisingly, for HV and Tournament selection 
operator, DE is not the best crossover operator with this metric, but is in 
the middle of its partners. This can be explained by the high dispersion 
of these combinations, since the infrequent but very high HV values of 
the partners may be attracting the calculated average, making it higher. 
The combination NSGA-II_Tournament_PM_SBX is not highlighted in 
either table. In addition, it does not return results for RF00028.1.

From the means of the final and intermediate HV and IGD values 
of the 31 repetitions, convergence plots with different color codes have 
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Table 3
Average HV values of RFAM structures. Values are expressed in scientific notation(E-03).

Combination R01 R02 R03 R04 R05 R06 R07 R08 R09 R12 R13 R14 R15 R17 R18 R19 R21 R22 R25 R26 R27 R28 R29 R30

CT-R-PM-1P 333.9 366.6 15.9 443.1 603.9 487.7 422.1 577.4 314.3 480.9 399.0 534.7 390.7 446.1 165.7 526.4 573.3 548.7 415.7 451.9 623.3 134.5 547.5 311.3

CT-R-PM-2P 328.8 440.0 NA 485.2 611.4 509.3 438.8 574.9 326.8 470.1 420.0 541.4 429.3 481.6 282.0 536.9 567.0 571.7 466.2 441.0 633.3 57.9 555.0 432.7
CT-R-PM-DE 48.3 174.3 NA 355.9 477.0 319.2 279.6 473.4 53.0 378.7 282.9 412.8 247.3 280.8 8.7 385.6 484.9 402.7 364.9 340.3 541.0 15.7 397.8 278.4

CT-R-PM-EXP 401.2 471.0 11.5 511.9 608.4 517.0 464.0 582.8 279.1 506.3 441.9 549.2 457.2 463.7 305.5 545.9 579.8 594.6 536.7 453.3 631.6 8.4 563.1 380.4
CT-R-PM-KP 330.6 439.0 NA 496.9 603.2 479.5 428.2 571.2 310.0 499.1 428.0 532.8 431.1 433.9 249.3 530.2 552.1 577.5 463.8 423.6 622.8 32.2 551.8 421.2

CT-R-PM-SBX 253.3 437.2 NA 431.2 592.9 480.0 401.7 558.5 343.8 453.0 362.1 553.6 356.2 351.9 144.7 534.9 572.7 543.6 424.5 431.0 613.4 NA 541.9 447.3
CT-T-PM-1P 37.6 39.8 NA 261.2 515.0 231.9 226.9 550.0 126.1 328.5 217.1 386.6 68.8 96.5 17.0 319.6 405.4 314.0 214.3 377.4 637.4 12.6 197.5 94.8
CT-T-PM-2P 10.1 96.3 NA 264.1 459.8 240.3 215.5 514.0 143.1 278.9 243.7 386.7 156.0 79.7 25.4 324.1 438.7 338.5 186.4 368.2 635.6 0 179.0 169.3
CT-T-PM-DE 0 4.2 NA 219.9 291.7 15.6 25.3 289.5 18.8 237.4 215.5 323.8 38.0 61.2 6.7 56.2 450.9 124.6 72.4 115.1 551.5 NA 15.0 97.2
CT-T-PM-EXP 14.7 93.6 NA 258.3 551.2 255.4 175.8 557.8 34.4 215.7 172.5 436.7 161.8 53.7 56.0 346.4 467.8 377.9 186.9 380.6 633.0 0 165.2 161.4
CT-T-PM-KP 13.5 69.8 NA 263.5 415.7 225.5 160.8 441.8 66.5 240.3 207.2 343.9 93.1 41.5 15.0 271.7 421.4 337.0 182.4 368.8 626.1 NA 186.8 134.6
CT-T-PM-SBX 4.0 81.4 NA 371.6 404.7 163.0 119.2 482.7 119.4 333.6 211.6 453.7 75.0 145.9 22.9 169.8 564.3 362.5 151.5 288.1 626.5 5.9 97.5 207.1
N3-R-PM-1P 490.9 531.5 170.5 515.2 639.0 591.9 534.0 628.0 196.8 493.8 476.2 582.5 530.2 316.3 430.8 616.6 640.2 622.2 563.2 518.5 673.8 4.4 618.8 322.1
N3-R-PM-2P 487.0 523.1 189.2 482.6 637.9 607.6 540.1 625.9 300.4 488.5 439.4 580.8 522.6 324.8 428.0 593.8 626.7 610.4 552.6 508.4 673.9 6.1 611.6 409.1

N3-R-PM-DE 348.1 395.6 249.2 441.5 596.9 493.5 410.7 588.6 223.5 463.7 388.6 555.0 371.0 364.2 229.8 565.6 542.1 490.0 466.5 404.2 614.7 169.8 551.2 334.5

N3-R-PM-EXP 506.0 553.9 220.7 558.6 645.6 613.5 581.6 627.1 313.2 572.2 518.6 587.2 568.4 421.5 565.2 605.7 643.8 644.6 610.8 523.1 675.0 NA 628.1 469.2
N3-R-PM-KP 477.3 525.3 117.4 469.2 631.7 589.7 519.1 626.3 237.1 460.6 401.6 571.9 510.4 287.5 379.7 586.7 610.9 589.9 534.7 495.9 668.7 0 615.7 412.3
N3-R-PM-SBX 456.3 499.2 107.9 523.9 636.8 572.5 509.8 625.3 158.3 503.5 486.4 568.1 481.4 370.0 286.8 597.8 634.1 584.2 545.7 483.2 665.8 0 609.9 400.0
N3-T-PM-1P 492.4 527.2 178.0 495.4 650.3 603.5 541.8 630.4 162.3 476.9 483.6 579.3 520.8 293.1 438.1 632.0 652.1 628.0 557.1 519.8 673.9 NA 613.6 293.2
N3-T-PM-2P 494.7 526.4 111.7 473.3 645.7 604.1 533.6 627.6 233.7 498.7 435.4 593.9 508.6 305.3 405.0 619.4 629.2 610.2 554.3 510.2 675.2 NA 622.2 407.7
N3-T-PM-DE 313.6 353.1 124.3 446.4 595.8 516.2 361.9 590.5 58.7 449.2 385.4 547.3 341.4 170.6 156.6 565.4 542.9 488.6 358.0 401.7 606.8 38.7 550.8 137.2

N3-T-PM-EXP 521.6 551.6 185.4 556.1 646.0 615.3 583.0 629.6 303.4 556.7 514.4 595.5 559.8 417.9 564.0 621.0 648.2 637.3 604.7 521.1 672.6 17.7 629.9 472.4
N3-T-PM-KP 480.9 519.3 137.8 463.1 636.4 581.9 510.9 622.6 197.8 458.1 406.9 590.1 491.3 219.3 379.7 606.5 624.7 586.5 518.4 503.4 668.5 NA 610.1 330.1
N3-T-PM-SBX 481.0 520.1 119.5 507.6 636.4 570.7 498.7 625.8 108.4 483.0 452.3 572.9 474.2 308.6 274.5 604.6 615.9 580.0 494.6 481.3 666.1 NA 606.1 270.1
N2-R-PM-1P 427.1 472.2 154.0 460.1 613.3 522.6 510.4 598.2 117.4 443.7 441.3 590.4 474.5 265.3 379.4 592.6 599.6 572.2 490.5 488.5 648.6 2.0 565.2 232.0
N2-R-PM-2P 441.4 468.4 162.8 452.4 609.3 537.8 510.2 596.0 231.2 459.9 425.4 584.0 468.0 264.5 353.3 564.5 606.7 567.0 494.9 490.7 651.2 5.7 572.2 324.3

N2-R-PM-DE 339.3 378.2 239.6 441.9 576.1 447.0 390.7 549.6 214.2 457.6 380.9 556.6 353.2 362.7 252.4 545.9 546.9 471.2 462.9 388.4 590.9 174.0 513.7 328.0
N2-R-PM-EXP 461.2 473.0 200.2 517.6 610.4 532.7 529.8 596.6 218.3 493.8 485.5 578.4 503.1 349.5 504.1 578.2 624.1 566.3 531.1 487.8 644.3 NA 579.4 353.3
N2-R-PM-KP 425.9 464.1 99.8 439.7 608.9 530.5 486.7 594.7 180.4 436.7 393.9 580.9 445.7 257.1 333.3 564.2 600.9 552.9 477.5 490.6 655.8 0 577.4 337.8
N2-R-PM-SBX 432.7 441.4 85.7 504.2 604.3 506.7 459.1 591.2 149.9 485.9 468.0 571.4 438.7 372.9 312.0 561.7 601.3 542.7 507.3 485.1 648.0 0 568.1 376.6
N2-T-PM-1P 445.7 460.0 154.8 480.1 609.8 515.9 500.5 591.1 116.7 429.0 446.3 574.3 463.7 251.7 375.3 591.2 614.8 559.6 485.3 493.0 639.7 NA 548.5 225.5
N2-T-PM-2P 441.2 454.3 99.3 453.6 609.0 514.9 490.7 587.4 179.1 462.8 414.3 594.7 444.2 256.2 346.3 564.5 596.0 550.1 484.0 487.2 645.4 NA 554.4 324.4
N2-T-PM-DE 270.6 300.3 113.0 433.8 569.3 443.4 269.2 550.4 49.1 421.7 392.2 551.9 284.9 165.9 131.4 528.9 531.2 442.4 322.3 393.1 590.6 47.7 507.3 97.5
N2-T-PM-EXP 449.5 459.3 157.2 514.5 608.7 514.4 514.8 588.0 238.6 486.2 490.7 595.9 480.5 378.3 513.2 572.5 616.6 560.7 520.0 479.1 637.2 13.4 557.9 377.8
N2-T-PM-KP 418.7 445.6 126.4 424.4 609.3 510.2 481.6 589.4 139.6 441.0 378.1 582.8 427.8 223.5 338.7 565.2 583.3 539.2 456.9 488.8 648.6 NA 551.2 282.8
N2-T-PM-SBX 429.5 434.0 98.2 479.4 591.8 504.0 449.9 580.4 114.7 459.5 441.5 562.9 421.7 322.4 294.0 565.1 586.6 522.3 444.8 475.1 640.0 NA 555.3 271.5

SE-R-PM-1P 526.0 568.5 177.1 559.3 669.4 632.0 578.4 650.6 159.2 500.6 533.5 601.3 566.1 280.8 440.5 644.1 673.1 661.7 564.8 550.8 695.7 3.3 644.2 276.5

SE-R-PM-2P 545.1 578.2 201.6 535.1 665.0 653.9 588.7 651.6 279.0 532.5 499.7 597.7 572.3 295.0 406.0 628.5 670.4 678.9 570.1 554.5 696.9 6.7 653.7 357.5

SE-R-PM-DE 365.8 414.8 257.8 477.2 638.0 525.3 445.8 636.1 248.5 492.8 419.5 612.2 388.3 389.3 243.9 612.6 607.7 534.7 497.3 439.5 676.7 175.0 590.9 353.2

SE-R-PM-EXP 564.0 602.8 240.5 620.4 666.2 662.0 625.1 655.1 260.4 578.8 594.7 607.0 615.8 381.9 506.7 642.8 680.5 696.7 636.6 567.4 696.8 NA 653.4 399.4
SE-R-PM-KP 539.1 551.5 130.6 514.1 660.8 639.6 568.7 652.2 204.0 506.9 490.7 591.3 547.8 280.6 370.8 621.4 668.7 644.6 538.4 550.6 696.2 0 649.4 371.1

SE-R-PM-SBX 521.4 562.2 115.4 608.8 666.2 634.7 572.6 653.6 204.3 582.1 574.7 599.0 527.2 448.8 357.1 640.9 679.2 656.1 584.4 528.1 700.7 0 643.5 435.6

SE-T-PM-1P 544.2 572.7 197.6 545.2 657.7 639.3 592.5 651.6 125.5 502.5 548.2 606.9 573.8 283.8 410.5 655.0 686.6 668.8 563.2 551.5 693.6 NA 643.9 275.1

SE-T-PM-2P 554.2 580.6 118.4 532.7 668.1 649.7 581.0 652.3 209.1 529.2 508.5 609.2 553.8 275.1 383.2 649.1 671.4 656.0 563.4 552.0 695.7 NA 650.9 330.8
SE-T-PM-DE 347.9 358.5 128.3 473.0 638.2 541.6 339.1 634.1 43.4 464.5 413.7 608.9 330.4 184.5 149.6 608.9 609.1 506.6 391.0 442.0 673.3 44.5 586.0 141.4

SE-T-PM-EXP 557.1 596.1 201.7 598.8 668.1 657.6 637.1 658.5 269.2 570.4 587.9 618.9 608.4 394.2 522.2 663.6 681.3 694.6 632.1 557.1 697.7 12.3 657.4 377.9
SE-T-PM-KP 526.0 560.1 166.8 514.9 663.9 636.3 573.9 651.7 162.5 519.9 491.0 604.3 540.7 237.0 349.6 637.2 664.9 638.2 542.4 543.7 696.4 NA 650.9 296.4

SE-T-PM-SBX 532.5 567.5 129.8 579.9 669.8 636.6 574.5 654.7 162.7 558.0 546.5 606.8 535.6 361.4 339.9 641.6 672.7 641.8 574.3 524.1 701.1 NA 652.5 312.6

Note that the color code used refers to the top three values, specifically: ■ First, ■ Second, ■ Third.
been created to highlight all the studied features (crossover operators 
in Figs.  6 and 7, selection operators in Figs.  8 and 9 and algorithms 
in Figs.  10 and 11). As in the case of the boxplots, only a selection 
of them is shown, and the complete set can be consulted in the 
supplementary material. These plots allow us to perform an analysis of 
convergence, in order to evaluate if the convergence has been reached, 
and the behavior of the alg+oper combinations as they advance in 
time. It should be noted that some runs missed several intermediate 
points in the execution and returned fewer intermediate results than 
expected. When this was the case, the last value was prolonged to 
the end, which in some plots generates a ‘‘false plateau’’ effect, easily 
detectable due to the completely flat slope of the lines at the end 
except for the last point, which is always the one corresponding to 
the final solutions. A first visual inspection of these plots shows that 
convergence may have been reached (or is close) for some RFAM struc-
tures (RF00001.121, RF00002.2, RF00005.1, RF00006.1, RF00008.11, 
RF00014.2, RF00019.115, RF000021.10, RF00022.1, RF00026.1,
RF000027.7 and RF000029.107), but clearly not for others
(RF00003.94, RF00009.115, RF00017.90, RF000018.2, RF000025.12, 
RF00028.1 and RF00030.30). Since the last point represented in these 
plots has the same value than Tables  3 and 4, the same conclusions 
reached from these tables can be seen here in a more visual way 
when looking at the end of the lines. For example, our two presumed 
candidates for the best alg+oper combination (both versions of SMS-
EMOA + Exp) are usually found among the top performers. The 
NSGA-II_Tournament_PM_SBX combination always ranks in the middle 
or worse half, but does not reach the bottom positions (its worst 
position is 5th from the bottom, with RF00003.94 for HV).

Focusing on crossover operators (Figs.  6 and 7), we can see how 
Exp tends to be in high-performing positions and DE in low-performing 
ones (but not always), with the obvious exceptions of RF00003.94 and 
RF00028.1. The rest of the crossover operators do not exhibit any 
17 
recognizable pattern. From inspection of Figs.  8 and 9 (colored by 
selection operators), it is not possible to come to any firm conclusions, 
but there seems to be a tendency for RandS to be in better positions 
and improve performance faster than Tournament, although it is not 
very marked. Color patterns are more evident in Figs.  10 and 11 (by 
algorithms), especially in those RFAM structures for which we have said 
that convergence seems to have been achieved, and leaving aside those 
that clearly have not. From this observation we can conclude that, when 
there is enough time to be close to convergence, the most important 
alg+oper combination parameter for performance is algorithm. Based 
on their line positions, the best algorithm would be SMS-EMOA and 
the worst by far C-TAEA, as we indicated above. NSGA-III and NSGA-
II have not been ranked so far, but from these plots it is possible 
to conclude that NSGA-III is, in general, better than NSGA-II. We 
will now turn our attention to some of the detected exceptions to 
the aforementioned observations, looking for an explanation in these 
graphs:

• From inspection of Tables  3 and 4, we saw that some combi-
nations that use C-TAEA+RandS are among the top three for 
RF00009.115, RF00017.90 and RF00030.30. Above we classified 
these RFAM structures as not reaching the convergence. This is 
especially clear for the other algorithms besides C-TAEA (in fact, 
C-TAEA could have converged). If we look at the slope of the 
combinations (omitting the false plateau part), it is clear that C-
TAEA in combination with RandS improves performance more 
quickly (with some exceptions), but stagnates earlier than other 
algorithms. With more time, many of these would improve their 
performance, outperforming C-TAEA. Furthermore, from boxplots 
(Figs.  2 and 3) we identified RF00012.15 as another exception 
of C-TAEA in combination with RandS which is not the worst 
algorithm (besides the three RFAM structures aforementioned), 
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Table 4
Average IGD values of RFAM structures. Values are expressed in scientific notation (E-03).
 Combination R01 R02 R03 R04 R05 R06 R07 R08 R09 R12 R13 R14 R15 R17 R18 R19 R21 R22 R25 R26 R27 R28 R29 R30  
 CT-R-PM-1P 270.3 260.1 955.0 183.9 94.0 180.0 194.1 108.8 262.2 185.4 189.5 130.0 217.1 194.4 415.3 148.0 130.6 143.0 234.0 116.7 116.5 675.8 134.8 314.0  
 CT-R-PM-2P 305.6 210.2 NA 152.0 87.9 161.2 181.9 109.0 256.7 187.3 177.4 127.2 187.4 180.3 320.3 137.7 129.8 127.1 198.1 120.7 111.2 889.5 132.5 226.4   CT-R-PM-DE 685.2 419.8 NA 242.6 178.8 284.6 312.3 170.7 604.6 246.0 294.4 208.7 336.8 313.1 781.5 239.7 183.9 239.1 288.7 184.1 168.7 952.2 225.0 366.6  
 CT-R-PM-EXP 188.9 219.1 974.5 138.3 91.3 157.5 166.3 104.9 302.4 166.5 172.4 120.0 173.5 185.6 302.8 133.2 126.5 119.7 166.6 113.8 110.9 964.1 132.7 273.2   CT-R-PM-KP 260.2 211.4 NA 144.5 93.7 180.8 188.5 111.9 269.9 162.0 185.8 129.1 184.4 199.6 353.9 143.3 136.6 124.6 203.6 132.6 121.5 938.9 134.2 230.9  
 CT-R-PM-SBX 428.8 187.3 NA 198.9 103.2 177.8 217.1 122.4 257.9 199.6 251.1 116.0 244.0 245.4 464.7 143.0 127.8 150.0 248.1 124.9 122.4 NA 142.8 215.0   CT-T-PM-1P 736.6 646.6 NA 325.8 152.0 360.9 377.8 124.4 466.6 299.9 344.0 225.5 559.7 452.5 685.4 283.7 232.4 335.7 399.5 158.9 110.8 815.9 423.0 565.8   CT-T-PM-2P 794.0 551.7 NA 324.4 192.2 337.2 386.2 149.4 456.1 340.6 312.6 231.6 437.7 499.8 674.9 281.2 206.9 307.7 437.1 160.5 109.2 992.1 427.7 459.1   CT-T-PM-DE 997.6 895.0 NA 379.6 326.4 775.0 777.9 301.6 778.6 403.0 371.1 271.3 726.2 561.4 801.3 635.3 204.1 522.9 709.5 414.1 158.5 NA 773.6 603.5   CT-T-PM-EXP 833.6 539.5 NA 334.0 127.0 331.5 436.2 122.6 585.6 413.9 403.9 194.0 433.1 518.2 560.5 267.8 191.9 276.4 439.4 152.9 113.4 987.9 447.3 456.6   CT-T-PM-KP 815.2 588.5 NA 322.4 219.6 352.1 447.8 199.1 567.7 380.0 350.4 262.8 521.3 544.9 755.0 319.2 221.1 306.5 439.7 158.5 120.0 NA 419.7 500.6   CT-T-PM-SBX 897.0 552.4 NA 241.2 238.4 413.1 490.4 175.3 456.2 290.9 369.8 186.8 551.4 407.4 707.6 415.8 140.8 267.5 494.3 226.4 119.0 981.5 533.1 413.5   N3-R-PM-1P 124.0 128.5 667.2 139.3 73.5 104.3 129.1 72.8 356.1 182.0 147.0 91.8 126.3 261.1 209.9 86.3 86.9 102.8 146.8 88.1 78.4 967.0 90.0 323.4   N3-R-PM-2P 125.4 133.6 642.6 155.3 74.3 98.2 128.8 74.2 285.8 176.6 163.9 93.2 128.8 253.4 219.3 93.9 88.2 111.7 151.5 91.2 79.2 968.2 89.8 259.4  
 N3-R-PM-DE 219.3 205.5 346.6 176.5 92.5 152.1 202.2 88.6 385.4 184.4 214.8 109.7 225.2 273.4 396.4 107.9 132.8 174.3 218.5 131.4 108.5 601.2 110.0 323.8  
 N3-R-PM-EXP 116.9 118.1 605.9 122.1 72.3 96.0 104.4 74.2 258.3 143.0 123.1 88.3 105.4 207.4 174.7 90.4 81.8 98.5 130.5 87.7 78.9 NA 83.5 224.2   N3-R-PM-KP 127.9 132.6 760.8 161.0 77.0 103.8 142.0 73.9 335.9 195.0 189.4 98.3 138.8 281.2 232.2 97.1 96.1 119.4 163.2 92.5 83.3 988.8 87.4 251.5   N3-R-PM-SBX 141.6 137.9 790.8 127.2 75.1 109.0 145.7 75.7 434.4 165.3 147.4 97.2 151.7 228.5 325.2 92.4 85.7 126.2 159.0 99.6 83.1 962.1 88.6 276.8   N3-T-PM-1P 124.6 128.5 667.9 152.5 70.3 100.8 125.6 74.5 381.2 195.7 142.9 94.7 132.6 271.6 210.5 81.8 83.1 103.1 149.5 88.5 78.7 NA 91.9 342.6   N3-T-PM-2P 120.8 131.0 755.5 168.5 72.3 98.9 136.4 74.1 334.4 172.4 167.7 88.3 136.3 264.0 221.7 85.1 87.6 112.7 151.3 89.1 78.9 NA 84.7 257.6   N3-T-PM-DE 246.4 239.3 574.4 174.1 91.8 136.7 238.3 88.4 618.3 195.9 214.9 112.1 245.3 425.7 474.3 107.8 130.8 176.5 314.2 132.3 113.7 905.3 111.1 528.2  
 N3-T-PM-EXP 107.6 121.5 664.8 124.5 71.3 95.6 106.2 72.7 264.7 154.2 125.0 88.0 110.3 210.5 181.1 84.3 83.7 100.2 134.0 91.7 81.9 941.9 82.7 221.7   N3-T-PM-KP 126.5 132.3 712.3 174.2 75.2 106.7 147.2 74.8 364.3 198.6 187.7 89.6 149.3 325.6 233.8 88.3 90.7 124.4 171.0 91.3 84.0 NA 89.7 315.0   N3-T-PM-SBX 124.8 133.0 744.7 137.0 74.7 109.9 149.3 76.0 476.3 185.6 165.0 95.1 160.1 269.4 334.2 89.7 93.9 128.6 188.9 100.9 85.6 NA 91.4 378.2   N2-R-PM-1P 176.1 170.0 669.1 174.9 97.7 156.2 148.3 96.8 430.1 214.0 170.4 90.1 163.5 289.9 230.9 110.1 121.2 136.4 188.6 117.9 95.0 969.2 132.5 396.5   N2-R-PM-2P 164.5 172.4 661.1 177.9 98.3 143.6 152.8 97.2 331.2 200.1 180.3 93.4 165.4 289.7 244.3 121.0 109.9 139.3 181.1 114.9 92.1 970.3 120.9 302.2  
 N2-R-PM-DE 229.5 223.9 358.1 183.4 109.1 185.2 220.9 112.0 398.9 191.5 223.7 110.2 243.0 281.0 379.2 124.8 136.2 192.6 223.2 155.4 116.9 594.8 144.8 334.7   N2-R-PM-EXP 157.1 169.9 619.0 149.8 100.5 145.7 144.0 98.7 332.2 185.1 150.7 96.9 152.9 233.5 174.6 117.9 102.7 145.3 176.4 118.5 95.9 NA 118.6 286.6   N2-R-PM-KP 170.2 173.5 773.1 184.4 94.7 140.2 166.7 96.6 374.1 211.7 202.6 95.9 182.9 296.9 259.4 119.7 109.7 141.1 192.4 110.8 90.3 988.0 118.0 287.9   N2-R-PM-SBX 166.9 183.2 804.1 147.7 97.9 151.0 181.7 97.5 437.0 175.3 168.1 96.7 183.3 236.3 310.9 121.4 112.0 148.3 185.7 111.4 92.4 964.3 119.8 278.1   N2-T-PM-1P 167.1 176.2 685.0 168.3 104.7 157.6 162.9 103.5 428.2 221.7 173.7 100.1 174.4 300.3 237.1 114.8 115.8 149.1 197.4 114.3 101.4 NA 142.0 400.2   N2-T-PM-2P 166.1 184.3 762.6 182.0 97.0 156.1 165.0 104.9 377.7 197.0 192.4 89.4 187.0 295.1 252.3 125.0 123.4 152.3 193.7 116.3 94.8 NA 135.6 304.7   N2-T-PM-DE 288.4 295.4 591.3 189.9 115.2 186.8 326.4 115.1 641.2 222.9 214.7 113.7 303.5 444.9 507.7 137.2 146.6 219.9 359.7 155.3 117.7 896.5 151.9 597.0  
 N2-T-PM-EXP 164.5 177.4 681.6 157.2 99.7 159.3 156.8 101.7 321.2 193.7 152.7 88.2 167.7 218.2 173.3 123.1 113.4 153.0 188.0 124.7 98.8 943.2 134.9 262.2   N2-T-PM-KP 178.4 185.3 722.7 201.0 98.3 158.1 171.5 101.0 408.0 209.9 210.6 95.6 195.2 320.6 256.6 120.9 123.4 157.2 209.5 109.6 94.2 NA 134.0 344.3   N2-T-PM-SBX 169.5 188.2 760.6 163.5 107.9 151.2 188.3 104.9 474.9 194.1 185.2 104.5 198.8 275.4 326.7 122.3 120.7 166.0 231.4 116.5 94.0 NA 129.4 377.1   SE-R-PM-1P 117.2 107.9 661.4 116.3 64.2 87.6 105.1 62.8 389.9 182.7 122.6 84.6 113.1 280.9 195.9 78.8 76.2 88.4 138.3 73.7 68.8 968.4 76.3 358.0  
 SE-R-PM-2P 105.2 103.9 640.1 128.3 63.6 79.3 98.4 61.2 295.0 149.4 133.3 84.3 104.6 268.6 214.2 80.8 74.3 80.2 137.4 72.8 68.6 969.6 74.4 288.7  
 SE-R-PM-DE 207.1 192.8 341.6 155.0 69.2 131.8 178.7 64.4 365.4 166.5 194.4 82.1 214.2 257.9 387.5 88.1 101.3 146.5 196.6 110.7 80.4 598.8 91.9 312.5  
 SE-R-PM-EXP 99.8 96.2 597.3 98.4 64.3 78.7 85.1 60.8 292.3 137.3 94.7 81.5 89.3 215.9 170.1 77.7 71.3 77.5 105.8 71.7 68.9 NA 74.5 256.6   SE-R-PM-KP 104.5 118.3 748.1 140.2 63.2 82.8 110.8 61.6 351.5 169.7 141.5 86.3 119.6 279.2 234.0 80.8 74.1 94.1 151.4 73.7 69.7 988.7 74.5 270.1  
 SE-R-PM-SBX 116.2 111.5 781.2 96.4 63.1 85.5 112.5 61.2 373.4 124.6 110.6 78.7 125.4 181.0 274.0 77.0 71.4 89.7 130.4 79.8 67.1 963.6 74.6 234.6  
 SE-T-PM-1P 109.4 107.1 660.1 128.1 64.7 84.5 97.9 62.9 416.6 179.6 113.1 81.0 105.1 277.5 211.6 74.5 71.2 86.4 136.4 72.7 70.6 NA 76.9 360.8  
 SE-T-PM-2P 102.6 103.5 754.2 137.1 62.9 80.7 103.9 61.7 349.3 160.4 130.6 81.7 115.1 284.3 225.9 74.8 74.6 89.8 138.7 72.3 68.1 NA 73.2 305.8   SE-T-PM-DE 220.3 239.2 572.2 159.6 67.7 122.2 261.9 66.0 637.5 189.2 199.7 85.5 262.1 421.4 493.0 91.4 101.3 166.9 292.0 109.6 82.6 897.0 93.4 532.0  
 SE-T-PM-EXP 103.2 97.2 657.8 102.8 63.1 78.8 81.3 60.7 288.5 144.6 98.0 78.7 94.6 207.7 168.4 73.7 70.0 78.3 110.1 73.2 68.8 947.4 72.7 267.1  
 SE-T-PM-KP 112.8 113.5 695.6 145.5 64.6 85.1 109.2 60.6 386.0 162.2 139.5 84.0 126.0 312.1 246.4 76.6 75.0 98.3 150.0 74.8 69.1 NA 73.4 335.9  
 SE-T-PM-SBX 109.3 106.7 738.6 108.5 62.4 85.1 110.1 61.8 408.6 138.1 123.2 80.1 122.8 228.1 284.3 77.3 74.2 95.8 137.8 81.7 67.5 NA 73.2 345.5  
Note that the color code used refers to the top three values, specifically: ■ First, ■ Second, ■ Third.
Table 5
Average HV and IGD values of crossover operators. Values are expressed in scientific notation (E-03).

(a) HV
Op. R01 R02 R03 R04 R05 R06 R07 R08 R09 R12 R13 R14 R15 R17 R18 R19 R21 R22 R25 R26 R27 R28 R29 R30

1P 412.2 442.3 131.0 470.0 619.8 528.1 488.3 609.7 164.8 457.0 443.2 557.0 448.6 279.2 332.2 572.2 605.7 571.9 481.8 493.9 660.8 19.6 547.4 253.8

2P 412.8 458.4 110.4 459.9 613.3 539.7 487.3 603.7 237.8 465.1 423.3 561.0 456.8 285.3 328.7 560.1 600.8 572.9 484.0 489.0 663.4 9.5 549.9 344.5

DE 254.2 297.4 139.0 411.2 547.9 412.7 315.3 539.0 113.6 420.7 359.8 521.1 294.3 247.4 147.4 483.6 539.5 432.6 366.9 365.6 605.7 83.2 464.1 220.9

EXP 434.4 475.2 152.2 517.0 625.6 546.0 513.9 611.9 239.6 497.5 475.8 571.1 494.4 357.6 442.1 572.0 617.7 596.6 532.4 496.2 661.0 6.5 554.3 374.0

KP 401.5 446.8 97.4 448.2 603.7 524.2 466.2 593.7 187.2 445.3 399.7 549.8 436.0 247.6 302.0 547.9 590.9 558.2 464.3 483.2 660.4 4.0 549.2 323.3

SBX 388.8 442.9 82.0 500.8 600.4 508.5 448.2 596.5 170.2 482.3 442.9 561.1 413.8 335.3 254.0 539.6 615.8 554.2 465.9 462.0 657.7 0.74 534.4 340.1

Best EXP EXP EXP EXP EXP EXP EXP EXP EXP EXP EXP EXP EXP EXP EXP 1P EXP EXP EXP EXP 2P DE EXP EXP

Note that the color code used refers to the top three values, specifically: ■ First, ■ Second, ■ Third.
(b) IGD

Op. R01 R02 R03 R04 R05 R06 R07 R08 R09 R12 R13 R14 R15 R17 R18 R19 R21 R22 R25 R26 R27 R28 R29 R30

1P 228.2 215.6 745.7 173.6 90.1 154.0 167.6 88.3 391.4 207.6 175.4 112.2 199.0 291.0 299.6 122.3 114.7 143.1 198.8 103.9 90.0 924.5 145.9 382.6

2P 235.5 198.8 777.0 178.2 93.6 144.4 169.2 91.5 335.8 198.0 182.3 111.1 182.8 291.9 296.6 125.0 111.9 140.1 198.6 104.7 87.8 973.7 142.4 300.5

DE 386.7 338.9 598.0 207.6 131.3 246.8 314.8 125.8 553.7 224.9 241.0 136.7 319.5 372.3 527.6 191.5 142.1 229.8 325.3 174.1 118.4 805.7 212.7 449.8

EXP 221.4 192.4 725.1 153.4 86.2 142.9 160.0 87.0 330.6 192.3 165.1 104.4 165.9 249.6 238.2 121.0 105.2 131.1 181.4 104.3 89.7 973.1 143.4 281.0

KP 237.0 206.9 801.6 184.2 98.3 151.2 185.5 97.4 382.2 211.1 200.9 117.7 202.2 320.0 321.4 130.7 115.8 145.7 210.1 105.5 91.5 988.1 141.4 317.0

SBX 269.2 200.0 827.5 152.5 102.8 160.3 199.4 96.8 414.8 184.2 190.1 106.9 217.2 259.0 378.4 142.4 103.3 146.5 222.0 117.7 91.4 983.9 156.6 314.9

Best EXP EXP DE SBX EXP EXP EXP EXP EXP SBX EXP EXP EXP EXP EXP EXP SBX EXP EXP 1P 2P DE KP EXP
Note that the color code used refers to the top three values, specifically: ■ First, ■ Second, ■ Third.
but with the difference that in this structure none of the C-TAEA 
+ RandS combinations are among the top three. Moreover, we 
have not classified this structure as convergent or non-convergent 
because it is uncertain. Therefore, if we consider it in a middle-
way, where it has not achieved convergence but is not so far 
from it as to be classified as clearly non-convergent, this would 
be consistent with the characteristics identified, since there would 
have been enough time for some of their partners to achieve 
better performances but not all of them, thus not being the worst 
but not being among the best either.
18 
• Looking at the boxplots (in Figs.  2 and 3) we identified DE as 
the worst crossover operator, as it is always the worst or almost 
the worst among its partners. There were some exceptions to 
this observation, such as NSGA-III, NSGA-II and SMS-EMOA when 
using RandS in RF00009.115, RF00017.90 and RF00030.30, and 
RF00012.15 for CTAEA in combination with Tournament, NSGA-
II, and with IGD for NSGA-III and SMS-EMOA. As before, the 
not achieved convergence and slope differences among those 
algorithms + Rands when using DE and their partners would 
explain this exception.
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Table 6
Average HV and IGD values of selection operators. Values are expressed in scientific notation (E-03).

(a) HV
Op. R01 R02 R03 R04 R05 R06 R07 R08 R09 R12 R13 R14 R15 R17 R18 R19 R21 R22 R25 R26 R27 R28 R29 R30

R 418.8 472.2 131.1 493.6 619.7 545.3 491.5 603.5 230.1 489.2 448.0 568.3 466.5 353.8 330.7 576.0 607.8 580.2 512.6 479.0 651.6 33.1 583.5 365.2

T 349.2 382.2 106.2 442.1 583.8 474.5 414.9 581.3 141.0 433.4 400.2 538.7 381.4 230.3 271.5 515.8 582.3 515.2 419.2 450.9 651.3 8.0 482.9 253.7

Best R R R R R R R R R R R R R R R R R R R R R R R R

Note that the color code used refers to the top three values, specifically: ■ First, ■ Second, ■ Third.
(b) IGD

Op. R01 R02 R03 R04 R05 R06 R07 R08 R09 R12 R13 R14 R15 R17 R18 R19 R21 R22 R25 R26 R27 R28 R29 R30

R 200.4 174.5 724.9 153.9 87.5 136.4 159.1 89.9 349.2 179.2 172.9 103.8 169.9 247.3 303.0 113.0 107.0 129.8 179.8 108.1 94.5 911.8 111.3 287.1

T 325.7 276.4 766.8 195.9 113.3 196.8 239.8 105.7 453.7 226.8 212.0 125.9 259.0 347.4 384.3 164.7 124.0 182.3 265.5 128.6 95.1 971.2 202.8 394.8

Best R R R R R R R R R R R R R R R R R R R R R R R R
Note that the color code used refers to the top three values, specifically: ■ First, ■ Second, ■ Third.
Table 7
Average HD and IGD values of algorithms. Values are expressed in scientific notation (E-03).

(a) HV
Alg. R01 R02 R03 R04 R05 R06 R07 R08 R09 R12 R13 R14 R15 R17 R18 R19 R21 R22 R25 R26 R27 R28 R29 R30

CT 148.0 226.1 2.3 363.6 511.3 327.0 279.8 514.5 177.9 368.5 300.1 454.7 242.0 244.7 108.2 379.0 506.5 424.4 305.5 369.9 614.6 22.3 333.2 261.3

N3 462.5 502.2 159.3 494.4 633.2 580.0 510.4 620.6 207.8 492.1 449.1 577.0 490.0 316.6 378.2 601.2 617.6 589.3 530.0 489.2 661.2 19.7 605.7 354.8

N2 415.2 437.6 140.9 466.8 601.7 506.7 466.1 584.4 162.4 456.5 429.8 577.0 433.8 289.2 344.5 566.2 592.3 537.2 473.1 470.6 636.7 20.2 554.2 294.3

SE 510.3 542.8 172.1 546.6 661.0 625.7 556.5 650.2 194.0 528.2 517.4 605.3 530.0 317.7 373.3 637.1 663.8 639.9 554.8 530.1 693.4 20.1 639.7 327.3

Best SE SE SE SE SE SE SE SE N3 SE SE SE SE SE N3 SE SE SE SE SE SE CT SE N3

Note that the color code used refers to the top three values, specifically: ■ First, ■ Second, ■ Third.
(b) IGD

Alg. R01 R02 R03 R04 R05 R06 R07 R08 R09 R12 R13 R14 R15 R17 R18 R19 R21 R22 R25 R26 R27 R28 R29 R30

CT 601.1 440.1 994.1 249.0 158.7 309.3 348.0 150.0 438.7 272.9 285.2 183.6 381.1 358.5 568.6 262.3 169.4 243.4 354.9 172.0 123.5 933.2 327.2 385.4

N3 142.2 145.1 661.1 151.0 76.7 109.3 146.3 76.7 374.6 179.1 165.7 95.5 150.8 272.7 267.8 92.1 95.1 123.2 173.2 98.7 86.2 944.5 91.7 308.5

N2 183.2 191.7 674.0 173.3 101.8 157.6 182.1 102.5 412.9 201.4 185.4 97.9 193.1 290.1 279.4 121.5 119.6 158.4 210.6 122.1 98.6 943.9 131.9 347.6

SE 125.6 124.8 654.0 126.3 64.4 90.2 121.2 62.1 379.5 158.7 133.4 82.4 132.7 267.9 258.8 79.3 77.9 99.3 152.1 80.6 70.9 944.5 77.4 322.3

Best SE SE SE SE SE SE SE SE N3 SE SE SE SE SE SE SE SE SE SE SE SE CT SE N3
Note that the color code used refers to the top three values, specifically: ■ First, ■ Second, ■ Third.
To study separately which option among the studied features is 
the best, from Tables  3 and 4, we calculated the averages of all 
the alg+oper combinations in which the studied option was used 
(e.g., for the 1Point crossover operation, its average is calculated among 
C-TAEA_RandS_PM_1Point, C-TAEA_Tournament_PM_1Point, NSGA-III_
RandS_PM_1Point, NSGA-III_Tournament_PM_1Point, NSGA-II_RandS_
PM_1Point, NSGA-II_Tournament_PM_1Point, SMS-EMOA_ RandS_PM_1
Point and SMS-EMOA_Tournament_PM_1Point). The best three values 
of each RFAM structure are highlighted and colored. For each RFAM 
structure we determined which option achieves the best value for 
both HV and IGD. These results are shown in Tables  5–7. As we 
can see, for both HV and IGD indicators, Exp is the best performing 
crossover operator for more RFAM structures (21 and 16 respectively). 
Between the two selection operators, RandS is always the best. Finally, 
SMS-EMOA wins among the algorithms for HV and IGD (20 and 21 
respectively). Also, from the distribution of highlighted positions we 
can infer that the worst would be C-TAEA, and NSGA-III is better than 
NSGA-II. These results are consistent with previous observations. Since 
NSGA-II_Tournament_PM_SBX does not use any of the best options, 
incorporating them would improve m2dRNAs.

As explained in Section 5.1, an objective ranking was created. It 
allows us to determine which alg+oper combination achieved the best 
performance. This ranking is shown in Table  8. The best combina-
tion is SMS-EMOA_Tournament_ PM_Exp, followed closely by SMS-
EMOA_RandS_PM_Exp. Both combinations were our presumed candi-
dates for best overall performance. The combination NSGA-II_
Tournament_PM_SBX (which, as mentioned above, corresponds to
m2dRNAs) obtains 0 points, which means a tie from the 27th to the 
last position (48th).
19 
6. Conclusions and future work

In this paper we have presented an experimental Analysis of Mul-
tiobjective Evolutionary Algorithms for solving the RNA inverse fold-
ing problem. We have tested four evolutionary algorithms: NSGA-
II, SMS-EMOA, NSGA-III and C-TAEA; two selection operators: Ran-
dom (RandS) and Tournament; six crossover operators: Simulated Bi-
nary (SBX), Differential Evolution (DE), One-Point (1Point), Two-Point 
(2Point), K-Point (KPoint) and Exponential (Exp), all of them combined 
with the same mutation operator: Polynomial (PM). The 48 possible 
combinations of algorithms + operators were run to solve the RFAM 
benchmark set, and their performances were calculated to develop a 
comparative study with them.

Throughout the different comparisons developed with the RFAM 
benchmark set we have established some observations on the studied 
features: SMS-EMOA is the best algorithm among those compared, and 
C-TAEA is the worst by far, which makes it not a good choice to 
solve this multiobjective problem; Looking at selection operators RandS 
performs better in general than Tournament; Finally, DE would be the 
worst among the crossover operators and Exp the best. Focusing on 
alg+oper combinations, the best is SMS-EMOA_Tournament_PM_Exp, 
followed at a short distance by SMS-EMOA_ RandS_PM_Exp. The analy-
sis of the results has not revealed synergistic relationships between the 
components of the combinations. What has been observed is, within 
each type of combination element (algorithms, crossover operators, and 
selection operators), which of the tested alternatives performs best or 
worst. Thus, the best combinations do not appear to be so because 
their components interact better with each other than with others, but 
because they are the best in their categories (this could be summarized 
as ‘‘the whole is not better than the sum of its parts’’). Of the three types 
of elements tested in the combinations, the algorithm appears to carry 
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Table 8
Alg+oper combinations ranking. For each RFAM structure, the calculated average final HV and IGD values were ordered from best to worst. 
The first to the sixth combinations obtained the following scores: 10, 8, 6, 4, 2 and 1 points. The seventh and subsequent combinations did 
not score any points. The scores corresponding to all the Rfam structures were added together. Both scores were summed to obtain the total 
score.
 Combination HV IGD Total 
 1 2 3 4 5 6 7+ Score 1 2 3 4 5 6 7+ Score score 
 SE-T-PM-EXP 5 9 2 2 0 2 4 144 5 8 3 1 2 0 5 140 284  
 SE-R-PM-EXP 9 3 3 0 3 1 5 139 8 4 2 0 2 0 8 128 267  
 SE-R-PM-SBX 2 1 2 3 2 1 13 57 3 2 3 2 1 2 11 76 133  
 SE-T-PM-2P 0 0 6 2 2 0 14 48 0 3 3 1 1 1 15 49 97  
 SE-T-PM-1P 1 1 2 2 3 2 13 46 0 2 2 4 0 3 13 47 93  
 SE-R-PM-2P 0 1 3 5 0 0 15 46 0 0 3 4 3 2 12 42 88  
 SE-T-PM-SBX 1 1 1 2 2 3 14 39 2 1 2 1 1 2 15 48 87  
 N3-R-PM-EXP 1 1 2 1 2 3 14 41 0 0 2 2 2 4 14 28 69  
 CT-R-PM-2P 1 1 0 0 2 0 20 22 2 0 0 1 0 1 20 25 47  
 SE-R-PM-DE 2 1 0 0 0 0 21 28 1 1 0 0 0 0 22 18 46  
 N3-T-PM-EXP 1 1 0 1 1 2 18 26 0 1 0 0 2 3 18 15 41  
 CT-R-PM-SBX 1 0 1 0 0 0 22 16 1 1 0 0 0 0 22 18 34  
 SE-R-PM-1P 0 1 0 1 4 4 14 24 0 0 0 0 3 0 21 6 30  
 N2-R-PM-DE 0 1 0 1 0 1 21 13 1 0 1 0 0 0 22 16 29  
 N3-R-PM-DE 0 1 1 0 0 0 22 14 0 1 1 0 0 0 22 14 28  
 CT-R-PM-1P 0 0 1 2 0 0 21 14 0 0 0 3 0 0 21 12 26  
 SE-T-PM-KP 0 0 0 0 0 1 23 1 1 0 0 2 0 1 20 19 20  
 SE-R-PM-KP 0 0 0 0 1 2 21 4 0 0 0 1 3 3 17 13 17  
 CT-R-PM-EXP 0 1 0 0 0 0 23 8 0 0 1 0 0 0 23 6 14  
 CT-R-PM-KP 0 0 0 0 2 1 21 5 0 0 0 0 2 1 21 5 10  
 SE-T-PM-DE 0 0 0 1 0 0 23 4 0 0 0 1 0 0 23 4 8  
 N2-T-PM-DE 0 0 0 1 0 1 22 5 0 0 0 0 0 1 23 1 6  
 N2-T-PM-EXP 0 0 0 0 0 0 24 0 0 0 1 0 0 0 23 6 6  
 N2-R-PM-EXP 0 0 0 0 0 0 24 0 0 0 0 1 0 0 23 4 4  
 CT-T-PM-1P 0 0 0 0 0 0 24 0 0 0 0 0 1 0 23 2 2  
 N3-T-PM-DE 0 0 0 0 0 0 24 0 0 0 0 0 1 0 23 2 2  
 CT-R-PM-DE 0 0 0 0 0 0 24 0 0 0 0 0 0 0 24 0 0  
 CT-T-PM-2P 0 0 0 0 0 0 24 0 0 0 0 0 0 0 24 0 0  
 CT-T-PM-DE 0 0 0 0 0 0 24 0 0 0 0 0 0 0 24 0 0  
 CT-T-PM-EXP 0 0 0 0 0 0 24 0 0 0 0 0 0 0 24 0 0  
 CT-T-PM-KP 0 0 0 0 0 0 24 0 0 0 0 0 0 0 24 0 0  
 CT-T-PM-SBX 0 0 0 0 0 0 24 0 0 0 0 0 0 0 24 0 0  
 N3-R-PM-1P 0 0 0 0 0 0 24 0 0 0 0 0 0 0 24 0 0  
 N3-R-PM-2P 0 0 0 0 0 0 24 0 0 0 0 0 0 0 24 0 0  
 N3-R-PM-KP 0 0 0 0 0 0 24 0 0 0 0 0 0 0 24 0 0  
 N3-R-PM-SBX 0 0 0 0 0 0 24 0 0 0 0 0 0 0 24 0 0  
 N3-T-PM-1P 0 0 0 0 0 0 24 0 0 0 0 0 0 0 24 0 0  
 N3-T-PM-2P 0 0 0 0 0 0 24 0 0 0 0 0 0 0 24 0 0  
 N3-T-PM-KP 0 0 0 0 0 0 24 0 0 0 0 0 0 0 24 0 0  
 N3-T-PM-SBX 0 0 0 0 0 0 24 0 0 0 0 0 0 0 24 0 0  
 N2-R-PM-1P 0 0 0 0 0 0 24 0 0 0 0 0 0 0 24 0 0  
 N2-R-PM-2P 0 0 0 0 0 0 24 0 0 0 0 0 0 0 24 0 0  
 N2-R-PM-KP 0 0 0 0 0 0 24 0 0 0 0 0 0 0 24 0 0  
 N2-R-PM-SBX 0 0 0 0 0 0 24 0 0 0 0 0 0 0 24 0 0  
 N2-T-PM-1P 0 0 0 0 0 0 24 0 0 0 0 0 0 0 24 0 0  
 N2-T-PM-2P 0 0 0 0 0 0 24 0 0 0 0 0 0 0 24 0 0  
 N2-T-PM-KP 0 0 0 0 0 0 24 0 0 0 0 0 0 0 24 0 0  
 N2-T-PM-SBX 0 0 0 0 0 0 24 0 0 0 0 0 0 0 24 0 0  
the most weight, followed by the crossover operator, while the selection 
operator appears to have little importance (which explains why the best 
combination does not include the best operator of this type). From a 
practical point of view, this suggests that the greatest efforts in selecting 
or creating elements for this problem should be directed primarily to 
the algorithm, followed by the crossover operator.

To test the performance of methods for solving the RNA inverse 
folding problem it is important to select structures where it is possible 
to reach or nearly reach convergence in affordable times. This can be 
achieved either by simply selecting structures that have already been 
used in other studies and are therefore approximately known to be 
easy/difficult to solve, depending on what proportion of methods have 
achieved this and the time required, or by taking into account certain 
structural features, as described in Anderson-Lee et al. (2016). As is 
the case here for RF00009.115, RF00017.90, and RF00030.30 some 
exceptions to the general observations may simply be a consequence 
of this. Also, a large dispersion of values makes it difficult to establish 
comparisons among methods (here seen with RF00003.94, RF00028.1) 
20 
and can lead to inaccuracies. Both observations point to the need to 
create boxplots and convergence plots to check whether the structures 
used meet these requirements, since the exceptions to the general obser-
vations may be due to a lack of sufficient time to reach convergence. As 
can be seen in the convergence graphs, the lines often cross, meaning 
that the combinations that improve HV and IGD values most quickly 
at the beginning of the process are not necessarily those that return 
the best results at the end. This means that if the results are collected 
before convergence has been reached, the behavior of the combinations 
may appear inconsistent. This effect may be seen in structures that take 
longer to solve, either due to their greater length or the difficulty to 
solve their structural components.

As future work, it would be useful to modify m2dRNAs to use the 
alg+oper combination and/or the individual characteristics identified 
here as the best (SMS-EMOA, Exp, Rands), either by changing only one 
of them or by using all possible combinations of these and the original 
ones. With these variations, we would perform a comparative study 
between them and with other methods similar to those performed in the 
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articles presenting m2dRNAs and other RNA inverse folding algorithms, 
more focused on comparing the ability of the different methods to solve 
the structures of the benchmark(s) used. To compare, we would identify 
how many and which structures are solved, in addition to using other 
interesting metrics for this comparison, such as success rate and run 
time.

Other related lines of future work could include further studying 
why there is no greater difference between the number of structures 
solved by m2dRNAs and the best combination, introducing other fea-
tures such as different chromosome encodings or mutation operators, 
testing other performance indicators, or modifying the definition of the 
MOOP. In addition, other potential directions could include improving 
algorithms, optimizing operators, and using additional benchmark sets.

CRediT authorship contribution statement

Álvaro Rubio-Largo: Writing – review & editing, Visualization, Su-
pervision, Project administration, Methodology, Investigation, Funding 
acquisition, Formal analysis, Data curation, Conceptualization. Nuria 
Lozano-García: Writing – original draft, Methodology, Investigation, 
Formal analysis, Data curation, Conceptualization. José M. Granado-
Criado: Writing – review & editing, Validation, Supervision, Method-
ology, Conceptualization.

Funding

This work was partially funded by the Junta de Extremadura (Spain) 
and the ERDF (European Regional Development Fund, EU), under 
the contract IB20047 (iARN project). This work was also partially 
supported by the MCIN (Ministry of Science and Innovation, Spain), 
the AEI (State Research Agency, Spain), and the ERDF (European Re-
gional Development Fund, EU), under the project PID2022-137275NA-
I00 funded by MCIN/AEI/10.13039/501100011033/FEDER, EU (X-BIO 
project).

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary material related to this article can be found online 
at https://doi.org/10.1016/j.engappai.2025.111189.

Data availability

Data will be made available on request.

References

Afnan, M.R., Ashraf, N.B., Islam, M.R., 2020. Multiobjective computational RNA design 
using chemical reaction optimization. In: 2020 4th International Conference on 
Computer, Communication and Signal Processing (ICCCSP). IEEE, pp. 1–6. http:
//dx.doi.org/10.1109/icccsp49186.2020.9315262.

Anderson-Lee, J., Fisker, E., Kosaraju, V., Wu, M., Kong, J., Lee, J., Lee, M., Zada, M., 
Treuille, A., Das, R., 2016. Principles for predicting RNA secondary structure 
design difficulty. J. Mol. Biol. 428 (5, Part A), 748–757. http://dx.doi.org/10.
1016/j.jmb.2015.11.013, Challenges in RNA structural modeling and design, URL 
https://www.sciencedirect.com/science/article/pii/S0022283615006567.

Andronescu, M., Fejes, A.P., Hutter, F., Hoos, H.H., Condon, A., 2004. A new algorithm 
for RNA secondary structure design. J. Mol. Biol. 336 (3), 607–624. http://dx.doi.
org/10.1016/j.jmb.2003.12.041.

Bellaousov, S., Kayedkhordeh, M., Peterson, R.J., Mathews, D.H., 2018. Accelerated 
RNA secondary structure design using preselected sequences for helices and loops. 
RNA 24 (11), 1555–1567. http://dx.doi.org/10.1261/rna.066324.118.
21 
Beume, N., Naujoks, B., Emmerich, M., 2007. SMS-EMOA: Multiobjective selection 
based on dominated hypervolume. European J. Oper. Res. 181 (3), 1653–1669. 
http://dx.doi.org/10.1016/j.ejor.2006.08.008.

Busch, A., Backofen, R., 2006. INFO-RNA - a fast approach to inverse RNA fold-
ing. Bioinformatics 22 (15), 1823–1831. http://dx.doi.org/10.1093/bioinformatics/
btl194.

Cazenave, T., Fournier, T., 2021. Monte Carlo inverse folding. In: Cazenave, T., 
Teytaud, O., Winands, M.H.M. (Eds.), Monte Carlo Search. Springer International 
Publishing, Cham, pp. 84–99. http://dx.doi.org/10.1007/978-3-030-89453-5_7.

Churkin, A., Retwitzer, M.D., Reinharz, V., Ponty, Y., Waldispühl, J., Barash, D., 2018. 
Design of RNAs: comparing programs for inverse RNA folding. Brief. Bioinform. 19 
(2), 350–358. http://dx.doi.org/10.1093/bib/bbw120.

Coello, C.A.C., Sierra, M.R., 2004. A study of the parallelization of a coevolutionary 
multi-objective evolutionary algorithm. In: MICAI 2004: Advances in Artificial 
Intelligence. Springer Berlin Heidelberg, pp. 688–697. http://dx.doi.org/10.1007/
978-3-540-24694-7_71.

Collette, Y., Siarry, P., 2004. Multiobjective Optimization. Springer Berlin Heidelberg, 
http://dx.doi.org/10.1007/978-3-662-08883-8.

Das, I., Dennis, J.E., 1998. Normal-boundary intersection: A new method for generating 
the Pareto surface in nonlinear multicriteria optimization problems.  SIAM J. Optim. 
8 (3), 631–657. http://dx.doi.org/10.1137/s1052623496307510.

Deb, K., Jain, H., 2014. An evolutionary many-objective optimization algorithm using 
reference-point-based nondominated sorting approach, part I: Solving problems 
with box constraints.  IEEE Trans. Evol. Comput. 18 (4), 577–601. http://dx.doi.
org/10.1109/tevc.2013.2281535.

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002. A fast and elitist multiobjective 
genetic algorithm: NSGA-II.  IEEE Trans. Evol. Comput. 6 (2), 182–197. http:
//dx.doi.org/10.1109/4235.996017.

Eastman, P., Shi, J., Ramsundar, B., Pande, V.S., 2018. Solving the RNA design problem 
with reinforcement learning. In: Chen, S.-J. (Ed.),  PLOS Comput. Biology 14 (6), 
e1006176. http://dx.doi.org/10.1371/journal.pcbi.1006176.

Erhan, H.E., Sav, S., Kalashnikov, S., Tsang, H.H., 2016. Examining the annealing 
schedules for RNA design algorithm. In: 2016 IEEE Congress on Evolutionary 
Computation. CEC, IEEE, pp. 1295–1302. http://dx.doi.org/10.1109/cec.2016.
7743937.

Esmaili-Taheri, A., Ganjtabesh, M., 2015. ERD: a fast and reliable tool for RNA design 
including constraints.  BMC Bioinform. 16 (1), 20. http://dx.doi.org/10.1186/
s12859-014-0444-5.

Esmaili-Taheri, A., Ganjtabesh, M., Mohammad-Noori, M., 2014. Evolutionary solution 
for the RNA design problem. Bioinformatics 30 (9), 1250–1258. http://dx.doi.org/
10.1093/bioinformatics/btu001.

Fleischer, M., 2003. The measure of Pareto optima applications to multi-objective 
metaheuristics. In: Lecture Notes in Computer Science. Springer Berlin Heidelberg, 
pp. 519–533. http://dx.doi.org/10.1007/3-540-36970-8_37.

García-Martín, J.A., Clote, P., Dotú, I., 2013. RNAiFold: a constraint programming 
algorithm for RNA inverse folding and molecular design. J. Bioinform. Comput. 
Biology 11 (02), 1350001. http://dx.doi.org/10.1142/s0219720013500017.

García-Martín, J.A., Dotú, I., Clote, P., 2015. RNAiFold 2.0: a web server and software 
to design custom and Rfam-based RNA molecules. Nucleic Acids Res. 43 (W1), 
W513–W521. http://dx.doi.org/10.1093/nar/gkv460.

Hammer, S., Wang, W., Will, S., Ponty, Y., 2019. Fixed-parameter tractable sampling 
for RNA design with multiple target structures.  BMC Bioinform. 20 (1), 209. 
http://dx.doi.org/10.1186/s12859-019-2784-7.

Hampson, D.J.D., Tsang, H.H., 2018. Incorporating dynamic exploration strategy for 
RNA design. In: 2018 IEEE Symposium Series on Computational Intelligence. SSCI, 
IEEE, pp. 1041–1048. http://dx.doi.org/10.1109/ssci.2018.8628681.

Hofacker, I., 2003. Vienna RNA secondary structure server. Nucleic Acids Res. 31 (13), 
3429–3431. http://dx.doi.org/10.1093/nar/gkg599.

Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, L.S., Tacker, M., Schuster, P., 
1994. Fast folding and comparison of RNA secondary structures. Monatshefte Für 
Chem. Chem. Mon. 125 (2), 167–188. http://dx.doi.org/10.1007/bf00818163.

Hombach, S., Kretz, M., 2016. Non-Coding RNAs in Colorectal Cancer. Springer 
International Publishing, pp. 3–17. http://dx.doi.org/10.1007/978-3-319-42059-
2_1.

Huang, L., Zhang, H., Deng, D., Zhao, K., Liu, K., Hendrix, D.A., Mathews, D.H., 2019. 
LinearFold: linear-time approximate RNA folding by 5'-to-3' dynamic programming 
and beam search. Bioinformatics 35 (14), i295–i304. http://dx.doi.org/10.1093/
bioinformatics/btz375.

Kerpedjiev, P., Hammer, S., Hofacker, I.L., 2015. Forna (force-directed RNA): Simple 
and effective online RNA secondary structure diagrams. Bioinformatics 31 (20), 
3377–3379. http://dx.doi.org/10.1093/bioinformatics/btv372.

Kleinkauf, R., Houwaart, T., Backofen, R., Mann, M., 2015a. antaRNA – multi-objective 
inverse folding of pseudoknot RNA using ant-colony optimization.  BMC Bioinform. 
16 (1), 389. http://dx.doi.org/10.1186/s12859-015-0815-6.

Kleinkauf, R., Mann, M., Backofen, R., 2015b. antaRNA: ant colony-based RNA 
sequence design. Bioinformatics 31 (19), 3114–3121. http://dx.doi.org/10.1093/
bioinformatics/btv319.

Koodli, R.V., Keep, B., Coppess, K.R., Portela, F., Das, R., 2019. EternaBrain: Au-
tomated RNA design through move sets and strategies from an internet-scale 
RNA videogame. In: Chen, S.-J. (Ed.),  PLOS Comput. Biology 15 (6), e1007059. 
http://dx.doi.org/10.1371/journal.pcbi.1007059.

https://doi.org/10.1016/j.engappai.2025.111189
http://dx.doi.org/10.1109/icccsp49186.2020.9315262
http://dx.doi.org/10.1109/icccsp49186.2020.9315262
http://dx.doi.org/10.1109/icccsp49186.2020.9315262
http://dx.doi.org/10.1016/j.jmb.2015.11.013
http://dx.doi.org/10.1016/j.jmb.2015.11.013
http://dx.doi.org/10.1016/j.jmb.2015.11.013
https://www.sciencedirect.com/science/article/pii/S0022283615006567
http://dx.doi.org/10.1016/j.jmb.2003.12.041
http://dx.doi.org/10.1016/j.jmb.2003.12.041
http://dx.doi.org/10.1016/j.jmb.2003.12.041
http://dx.doi.org/10.1261/rna.066324.118
http://dx.doi.org/10.1016/j.ejor.2006.08.008
http://dx.doi.org/10.1093/bioinformatics/btl194
http://dx.doi.org/10.1093/bioinformatics/btl194
http://dx.doi.org/10.1093/bioinformatics/btl194
http://dx.doi.org/10.1007/978-3-030-89453-5_7
http://dx.doi.org/10.1093/bib/bbw120
http://dx.doi.org/10.1007/978-3-540-24694-7_71
http://dx.doi.org/10.1007/978-3-540-24694-7_71
http://dx.doi.org/10.1007/978-3-540-24694-7_71
http://dx.doi.org/10.1007/978-3-662-08883-8
http://dx.doi.org/10.1137/s1052623496307510
http://dx.doi.org/10.1109/tevc.2013.2281535
http://dx.doi.org/10.1109/tevc.2013.2281535
http://dx.doi.org/10.1109/tevc.2013.2281535
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1371/journal.pcbi.1006176
http://dx.doi.org/10.1109/cec.2016.7743937
http://dx.doi.org/10.1109/cec.2016.7743937
http://dx.doi.org/10.1109/cec.2016.7743937
http://dx.doi.org/10.1186/s12859-014-0444-5
http://dx.doi.org/10.1186/s12859-014-0444-5
http://dx.doi.org/10.1186/s12859-014-0444-5
http://dx.doi.org/10.1093/bioinformatics/btu001
http://dx.doi.org/10.1093/bioinformatics/btu001
http://dx.doi.org/10.1093/bioinformatics/btu001
http://dx.doi.org/10.1007/3-540-36970-8_37
http://dx.doi.org/10.1142/s0219720013500017
http://dx.doi.org/10.1093/nar/gkv460
http://dx.doi.org/10.1186/s12859-019-2784-7
http://dx.doi.org/10.1109/ssci.2018.8628681
http://dx.doi.org/10.1093/nar/gkg599
http://dx.doi.org/10.1007/bf00818163
http://dx.doi.org/10.1007/978-3-319-42059-2_1
http://dx.doi.org/10.1007/978-3-319-42059-2_1
http://dx.doi.org/10.1007/978-3-319-42059-2_1
http://dx.doi.org/10.1093/bioinformatics/btz375
http://dx.doi.org/10.1093/bioinformatics/btz375
http://dx.doi.org/10.1093/bioinformatics/btz375
http://dx.doi.org/10.1093/bioinformatics/btv372
http://dx.doi.org/10.1186/s12859-015-0815-6
http://dx.doi.org/10.1093/bioinformatics/btv319
http://dx.doi.org/10.1093/bioinformatics/btv319
http://dx.doi.org/10.1093/bioinformatics/btv319
http://dx.doi.org/10.1371/journal.pcbi.1007059


Á. Rubio-Largo et al. Engineering Applications of Artiϧcial Intelligence 157 (2025) 111189 
Lee, J., Kladwang, W., Lee, M., Cantu, D., Azizyan, M., Kim, H., Limpaecher, A., 
Gaikwad, S., Yoon, S., Treuille, A., Das, R., 2014. RNA design rules from a massive 
open laboratory. Proc. Natl. Acad. Sci. 111 (6), 2122–2127. http://dx.doi.org/10.
1073/pnas.1313039111.

Li, K., Chen, R., Fu, G., Yao, X., 2019. Two-archive evolutionary algorithm for con-
strained multiobjective optimization.  IEEE Trans. Evol. Comput. 23 (2), 303–315. 
http://dx.doi.org/10.1109/tevc.2018.2855411.

Lipowski, A., Lipowska, D., 2012. Roulette-wheel selection via stochastic acceptance. 
Phys. A 391 (6), 2193–2196. http://dx.doi.org/10.1016/j.physa.2011.12.004.

Lorenz, R., Bernhart, S.H., zu Siederdissen, C.H., Tafer, H., Flamm, C., Stadler, P.F., 
Hofacker, I.L., 2011. ViennaRNA package 2.0. Algorithms Mol. Biology 6 (1), 
http://dx.doi.org/10.1186/1748-7188-6-26.

Lorenz, R., Wolfinger, M.T., Tanzer, A., Hofacker, I.L., 2016. Predicting RNA secondary 
structures from sequence and probing data. Methods 103, 86–98. http://dx.doi.
org/10.1016/j.ymeth.2016.04.004, Advances in RNA structure determination, URL 
https://www.sciencedirect.com/science/article/pii/S1046202316300743.

Lozano-García, N., Rubio-Largo, Á., Granado-Criado, J.M., 2024. A simple yet effective 
greedy evolutionary strategy for RNA design. IEEE Trans. Evol. Comput. 1. http:
//dx.doi.org/10.1109/TEVC.2024.3461509.

Lyngsø, R.B., 2008a. RNA secondary structure Boltzmann distribution. In: Encyclopedia 
of Algorithms. Springer US, pp. 777–779. http://dx.doi.org/10.1007/978-0-387-
30162-4_345.

Lyngsø, R.B., 2008b. RNA secondary structure prediction by minimum free energy. In: 
Encyclopedia of Algorithms. Springer US, pp. 782–785. http://dx.doi.org/10.1007/
978-0-387-30162-4_347.

Lyngsø, R.B., Anderson, J.W.J., Sizikova, E., Badugu, A., Hyland, T., Hein, J., 2012. 
FRNAkenstein: multiple target inverse RNA folding.  BMC Bioinform. 13 (1), 260. 
http://dx.doi.org/10.1186/1471-2105-13-260.

Mandelbrot, B.B., 1963. The variation of certain speculative prices. J. Bus. 36, 371–418.
Matthies, M.C., Bienert, S., Torda, A.E., 2012. Dynamics in sequence space for RNA 

secondary structure design. J. Chem. Theory Comput. 8 (10), 3663–3670. http:
//dx.doi.org/10.1021/ct300267j.

McBride, R., Tsang, H.H., 2020. Examination of annealing schedules for RNA design. 
In: 2020 IEEE Congress on Evolutionary Computation. CEC, IEEE, pp. 1–8. http:
//dx.doi.org/10.1109/cec48606.2020.9185702.

McBride, R., Tsang, H.H., 2021. SIMARD-LinearFold: Long sequence RNA design with 
simulated annealing. In: 2021 IEEE Congress on Evolutionary Computation (CEC). 
IEEE, pp. 2234–2241. http://dx.doi.org/10.1109/cec45853.2021.9504978.

McCaskill, J.S., 1990. The equilibrium partition function and base pair binding prob-
abilities for RNA secondary structure. Biopolymers 29 (6–7), 1105–1119. http://
dx.doi.org/10.1002/bip.360290621, arXiv:https://onlinelibrary.wiley.com/doi/pdf/
10.1002/bip.360290621.

Merleau, N.S.C., Smerlak, M., 2021. A simple evolutionary algorithm guided by 
local mutations for an efficient RNA design. In: Proceedings of the Genetic and 
Evolutionary Computation Conference. GECCO’21, ACM, pp. 1027–1034. http:
//dx.doi.org/10.1145/3449639.3459280.

Merleau, N.S.C., Smerlak, M., 2022. aRNAque: an evolutionary algorithm for inverse 
pseudoknotted RNA folding inspired by Lévy flights.  BMC Bioinform. 23 (1), 335. 
http://dx.doi.org/10.1186/s12859-022-04866-w.

Meyer, S., Chappell, J., Sankar, S., Chew, R., Lucks, J.B., 2015. Improving fold 
activation of small transcription activating RNAs (STARs) with rational RNA 
engineering strategies. Biotechnol. Bioeng. 113 (1), 216–225. http://dx.doi.org/10.
1002/bit.25693.

Minuesa, G., Alsina, C., García-Martín, J.A., Oliveros, J.C., Dotú, I., 2021. MoiRNAiFold: 
a novel tool for complex in silico RNA design. Nucleic Acids Res. 49 (9), 
4934–4943. http://dx.doi.org/10.1093/nar/gkab331.

Newman, M., 2005. Power laws, Pareto distributions and Zipf's law. Contemp. Phys. 
46 (5), 323–351. http://dx.doi.org/10.1080/00107510500052444.

Qiu, M., Khisamutdinov, E., Zhao, Z., Pan, C., Choi, J.-W., Leontis, N.B., Guo, P., 2013. 
RNA nanotechnology for computer design and in vivo computation. Philos. Trans. 
R. Soc. A: Math, Phys Eng Sci. 371 (2000), 20120310. http://dx.doi.org/10.1098/
rsta.2012.0310.

Rosenberg, J.M., Seeman, N.C., Day, R.O., Rich, A., 1976. RNA double-helical fragments 
at atomic resolution: II. The crystal structure of sodium guanylyl-3',5'-cytidine 
nonahydrate. J. Mol. Biol. 104 (1), 145–167. http://dx.doi.org/10.1016/0022-
2836(76)90006-1.

Rubio-Largo, Á., Escobar-Encinas, L., Lozano-García, N., Granado-Criado, J.M., 2024. 
Evolutionary strategy to enhance an RNA design tool performance. IEEE Access 12, 
15582–15593. http://dx.doi.org/10.1109/ACCESS.2024.3358426.
22 
Rubio-Largo, Á., Lozano-García, N., Granado-Criado, J.M., Vega-Rodríguez, M.A., 
2023. Solving the RNA inverse folding problem through target structure de-
composition and multiobjective evolutionary computation. Appl. Soft. Comput. 
147, 110779. http://dx.doi.org/10.1016/j.asoc.2023.110779, URL https://www.
sciencedirect.com/science/article/pii/S1568494623007974.

Rubio-Largo, Á., Vanneschi, L., Castelli, M., Vega-Rodríguez, M.A., 2019. Multiobjective 
metaheuristic to design RNA sequences. IEEE Trans. Evol. Comput. 23 (1), 156–169. 
http://dx.doi.org/10.1109/TEVC.2018.2844116.

Runge, F., Stoll, D., Falkner, S., Hutter, F., 2019. Learning to design RNA. In: 
International Conference on Learning Representations. URL https://openreview.net/
forum?id=ByfyHh05tQ.

Sav, S., Hampson, D.J.D., Tsang, H.H., 2016. SIMARD: A simulated annealing based 
RNA design algorithm with quality pre-selection strategies. In: 2016 IEEE Sympo-
sium Series on Computational Intelligence. SSCI, IEEE, pp. 1–8. http://dx.doi.org/
10.1109/ssci.2016.7849957.

Schnall-Levin, M., Chindelevitch, L., Berger, B., 2008. Inverting the viterbi algorithm: an 
abstract framework for structure design. In: Proceedings of the 25th International 
Conference on Machine Learning. ICML ’08, Association for Computing Machinery, 
New York, NY, USA, pp. 904–911. http://dx.doi.org/10.1145/1390156.1390270.

Seeman, N.C., Rosenberg, J.M., Suddath, F., Kim, J.J.P., Rich, A., 1976. RNA double-
helical fragments at atomic resolution: I. The crystal and molecular structure of 
sodium adenylyl-3',5'-uridine hexahydrate. J. Mol. Biol. 104 (1), 109–144. http:
//dx.doi.org/10.1016/0022-2836(76)90005-x.

Shi, J., Das, R., Pande, V.S., 2018. SentRNA: Improving computational RNA design by 
incorporating a prior of human design strategies. arXiv:1803.03146.

Slowik, A., Kwasnicka, H., 2020. Evolutionary algorithms and their applications to 
engineering problems. Neural Comput. Appl. 32, 12363–12379. http://dx.doi.org/
10.1007/s00521-020-04832-8.

Storn, R., Price, K., 1997. Differential evolution – A simple and efficient heuristic for 
global optimization over continuous spaces. J. Global Optim. 11 (4), 341–359. 
http://dx.doi.org/10.1023/a:1008202821328.

Taneda, A., 2010. MODENA: a multi-objective RNA inverse folding. Adv. Appl. 
Bioinform. Chem. 2011 (4), 1–12. http://dx.doi.org/10.2147/aabc.s14335.

Taneda, A., 2012. Multi-objective genetic algorithm for pseudoknotted RNA sequence 
design. Front. Genet. 3, http://dx.doi.org/10.3389/fgene.2012.00036.

Taneda, A., 2015. Multi-objective optimization for RNA design with multiple target 
secondary structures.  BMC Bioinform. 16 (1), 280. http://dx.doi.org/10.1186/
s12859-015-0706-x.

Tinoco, I., Bustamante, C., 1999. How RNA folds. J. Mol. Biol. 293 (2), 271–281. 
http://dx.doi.org/10.1006/jmbi.1999.3001.

Varani, G., McClain, W.H., 2000. The G⋅U wobble base pair.  EMBO Rep. 1 (1), 18–23. 
http://dx.doi.org/10.1093/embo-reports/kvd001.

Ward, M., Courtney, E., Rivas, E., 2023. Fitness functions for RNA structure design. 
Nucleic Acids Res. 51 (7), e40. http://dx.doi.org/10.1093/nar/gkad097, arXiv:
https://academic.oup.com/nar/article-pdf/51/7/e40/54399611/gkad097.pdf.

Wilm, A., Higgins, D.G., Notredame, C., 2008. R-coffee: a method for multiple alignment 
of non-coding RNA. Nucleic Acids Res. 36 (9), e52. http://dx.doi.org/10.1093/nar/
gkn174.

Yan, Z., Hamilton, W.L., Blanchette, M., 2021. Neural representation and gener-
ation for RNA secondary structures. In: International Conference on Learning 
Representations. URL https://openreview.net/forum?id=snOgiCYZgJ7.

Yang, X., Yoshizoe, K., Taneda, A., Tsuda, K., 2017. RNA inverse folding using Monte 
Carlo tree search.  BMC Bioinform. 18 (1), 468. http://dx.doi.org/10.1186/s12859-
017-1882-7.

Yao, H.-T., Waldispühl, J., Ponty, Y., Will, S., 2021. Taming disruptive base pairs to 
reconcile positive and negative structural design of RNA. In: RECOMB 2021 - 25th 
International Conference on Research in Computational Molecular Biology. Padova, 
France, URL https://hal.inria.fr/hal-02987566.

Zadeh, J.N., Steenberg, C.D., Bois, J.S., Wolfe, B.R., Pierce, M.B., Khan, A.R., 
Dirks, R.M., Pierce, N.A., 2010a. NUPACK: Analysis and design of nucleic acid 
systems. J. Comput. Chem. 32 (1), 170–173. http://dx.doi.org/10.1002/jcc.21596.

Zadeh, J.N., Wolfe, B.R., Pierce, N.A., 2010b. Nucleic acid sequence design via efficient 
ensemble defect optimization. J. Comput. Chem. 32 (3), 439–452. http://dx.doi.
org/10.1002/jcc.21633.

Zhou, T., Dai, N., Li, S., Ward, M., Mathews, D.H., Huang, L., 2023. RNA de-
sign via structure-aware multifrontier ensemble optimization. Bioinformatics 39 
(Supplement_1), i563–i571. http://dx.doi.org/10.1093/bioinformatics/btad252.

Zitzler, E., Thiele, L., 1999. Multiobjective evolutionary algorithms: a comparative case 
study and the strength Pareto approach.  IEEE Trans. Evol. Comput. 3 (4), 257–271. 
http://dx.doi.org/10.1109/4235.797969.

http://dx.doi.org/10.1073/pnas.1313039111
http://dx.doi.org/10.1073/pnas.1313039111
http://dx.doi.org/10.1073/pnas.1313039111
http://dx.doi.org/10.1109/tevc.2018.2855411
http://dx.doi.org/10.1016/j.physa.2011.12.004
http://dx.doi.org/10.1186/1748-7188-6-26
http://dx.doi.org/10.1016/j.ymeth.2016.04.004
http://dx.doi.org/10.1016/j.ymeth.2016.04.004
http://dx.doi.org/10.1016/j.ymeth.2016.04.004
https://www.sciencedirect.com/science/article/pii/S1046202316300743
http://dx.doi.org/10.1109/TEVC.2024.3461509
http://dx.doi.org/10.1109/TEVC.2024.3461509
http://dx.doi.org/10.1109/TEVC.2024.3461509
http://dx.doi.org/10.1007/978-0-387-30162-4_345
http://dx.doi.org/10.1007/978-0-387-30162-4_345
http://dx.doi.org/10.1007/978-0-387-30162-4_345
http://dx.doi.org/10.1007/978-0-387-30162-4_347
http://dx.doi.org/10.1007/978-0-387-30162-4_347
http://dx.doi.org/10.1007/978-0-387-30162-4_347
http://dx.doi.org/10.1186/1471-2105-13-260
http://refhub.elsevier.com/S0952-1976(25)01190-X/sb40
http://dx.doi.org/10.1021/ct300267j
http://dx.doi.org/10.1021/ct300267j
http://dx.doi.org/10.1021/ct300267j
http://dx.doi.org/10.1109/cec48606.2020.9185702
http://dx.doi.org/10.1109/cec48606.2020.9185702
http://dx.doi.org/10.1109/cec48606.2020.9185702
http://dx.doi.org/10.1109/cec45853.2021.9504978
http://dx.doi.org/10.1002/bip.360290621
http://dx.doi.org/10.1002/bip.360290621
http://dx.doi.org/10.1002/bip.360290621
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/bip.360290621
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/bip.360290621
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/bip.360290621
http://dx.doi.org/10.1145/3449639.3459280
http://dx.doi.org/10.1145/3449639.3459280
http://dx.doi.org/10.1145/3449639.3459280
http://dx.doi.org/10.1186/s12859-022-04866-w
http://dx.doi.org/10.1002/bit.25693
http://dx.doi.org/10.1002/bit.25693
http://dx.doi.org/10.1002/bit.25693
http://dx.doi.org/10.1093/nar/gkab331
http://dx.doi.org/10.1080/00107510500052444
http://dx.doi.org/10.1098/rsta.2012.0310
http://dx.doi.org/10.1098/rsta.2012.0310
http://dx.doi.org/10.1098/rsta.2012.0310
http://dx.doi.org/10.1016/0022-2836(76)90006-1
http://dx.doi.org/10.1016/0022-2836(76)90006-1
http://dx.doi.org/10.1016/0022-2836(76)90006-1
http://dx.doi.org/10.1109/ACCESS.2024.3358426
http://dx.doi.org/10.1016/j.asoc.2023.110779
https://www.sciencedirect.com/science/article/pii/S1568494623007974
https://www.sciencedirect.com/science/article/pii/S1568494623007974
https://www.sciencedirect.com/science/article/pii/S1568494623007974
http://dx.doi.org/10.1109/TEVC.2018.2844116
https://openreview.net/forum?id=ByfyHh05tQ
https://openreview.net/forum?id=ByfyHh05tQ
https://openreview.net/forum?id=ByfyHh05tQ
http://dx.doi.org/10.1109/ssci.2016.7849957
http://dx.doi.org/10.1109/ssci.2016.7849957
http://dx.doi.org/10.1109/ssci.2016.7849957
http://dx.doi.org/10.1145/1390156.1390270
http://dx.doi.org/10.1016/0022-2836(76)90005-x
http://dx.doi.org/10.1016/0022-2836(76)90005-x
http://dx.doi.org/10.1016/0022-2836(76)90005-x
http://arxiv.org/abs/1803.03146
http://dx.doi.org/10.1007/s00521-020-04832-8
http://dx.doi.org/10.1007/s00521-020-04832-8
http://dx.doi.org/10.1007/s00521-020-04832-8
http://dx.doi.org/10.1023/a:1008202821328
http://dx.doi.org/10.2147/aabc.s14335
http://dx.doi.org/10.3389/fgene.2012.00036
http://dx.doi.org/10.1186/s12859-015-0706-x
http://dx.doi.org/10.1186/s12859-015-0706-x
http://dx.doi.org/10.1186/s12859-015-0706-x
http://dx.doi.org/10.1006/jmbi.1999.3001
http://dx.doi.org/10.1093/embo-reports/kvd001
http://dx.doi.org/10.1093/nar/gkad097
http://arxiv.org/abs/https://academic.oup.com/nar/article-pdf/51/7/e40/54399611/gkad097.pdf
http://arxiv.org/abs/https://academic.oup.com/nar/article-pdf/51/7/e40/54399611/gkad097.pdf
http://arxiv.org/abs/https://academic.oup.com/nar/article-pdf/51/7/e40/54399611/gkad097.pdf
http://dx.doi.org/10.1093/nar/gkn174
http://dx.doi.org/10.1093/nar/gkn174
http://dx.doi.org/10.1093/nar/gkn174
https://openreview.net/forum?id=snOgiCYZgJ7
http://dx.doi.org/10.1186/s12859-017-1882-7
http://dx.doi.org/10.1186/s12859-017-1882-7
http://dx.doi.org/10.1186/s12859-017-1882-7
https://hal.inria.fr/hal-02987566
http://dx.doi.org/10.1002/jcc.21596
http://dx.doi.org/10.1002/jcc.21633
http://dx.doi.org/10.1002/jcc.21633
http://dx.doi.org/10.1002/jcc.21633
http://dx.doi.org/10.1093/bioinformatics/btad252
http://dx.doi.org/10.1109/4235.797969

	Exploring multiobjective evolutionary algorithms for designing Ribonucleic Acid sequences: An experimental analysis
	Introduction
	State of the art
	RNA Inverse Folding Problem
	Multiobjective metaheuristics
	Multiobjective optimization
	Chromosome representation
	Description of the multiobjective metaheuristics
	Description of the operators
	Selection
	Crossover
	Mutation


	Experimental results
	Previous considerations
	RFAM convergence

	Conclusions and Future Work
	CRediT authorship contribution statement
	Funding
	Declaration of competing interest
	Appendix A. Supplementary data
	Data availability
	References


