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A B S T R A C T

The integration of synthetic biology tools into eukaryotic systems offers both significant opportunities and 
challenges, particularly in optimizing transcriptional and post-transcriptional processes. T7 RNA polymerase (T7 
RNAP) and mRNA capping enzymes (CEs) have been fused to enable eukaryotic mRNA production within a 
single construct. However, the activity of the fusion construct between the African Swine Fever Virus capping 
enzyme (ASFVCE) and T7 RNAP was relatively low. To address this, we fused the Brazilian Marseillevirus 
capping enzyme (BMCE) to T7 RNAP and developed a machine learning (ML) pipeline to engineer greatly 
improved fusion variants. This approach enabled the additive integration of nine predicted single substitutions 
that improved gene expression in yeast, thereby generating fusion polymerases that exhibited over 10-fold im-
provements in gene expression efficiency relative to the original fusion enzyme. Not only were ML substitutions 
additive for gene expression, they could be further combined with variants identified via directed evolution for 
even higher activities. By allowing ML predictions to guide validations we could rapidly explore the sequence 
landscape for enzyme optimization, achieving superior results even when compared to directed evolution. The 
improved enzymes have potential impact for numerous synthetic biology applications, including metabolic en-
gineering, mRNA therapeutics, and cell free systems.

1. Introduction

Over the past decade, the fields of synthetic biology and protein 
engineering have made remarkable strides, driving progress across 
therapeutic, molecular, and industrial biotechnology domains [1,2]. At 
the core of many of these advancements are RNA polymerases, which 
play a fundamental role in transcription—the first and indispensable 
step of gene expression [3,4]. Among these enzymes, bacteriophage T7 
RNA polymerase (T7 RNAP) stands out as a versatile tool due to its 
exceptional efficiency and specificity in RNA synthesis. This has estab-
lished T7 RNAP as a cornerstone in synthetic biology, particularly in 
applications involving in vitro transcription and mRNA production 
[5,6].

While T7 RNAP has proven highly effective in prokaryotic systems, 
its adaptation for eukaryotic expression presents substantial challenges. 
Unlike prokaryotic systems, eukaryotic cells require complex post- 
transcriptional modifications, such as the addition of 5′-m7G caps and 
poly(A) tails, to stabilize mRNA and promote efficient translation [7,8]. 

These additional requirements, coupled with processes like splicing and 
nuclear export, necessitate innovative approaches to expand T7 RNAP’s 
functionality in eukaryotic contexts [9,10]. A promising solution has 
been the fusion of T7 RNAP with viral capping enzymes, such as the 
African Swine Fever Virus capping enzyme (ASFVCE), to facilitate co- 
transcriptional capping [11,12]. This approach has also been extended 
to the Faustovirus capping enzyme (FCE), where its fusion with T7 
RNAP demonstrated up to 90% Cap-1 incorporation, significantly 
simplifying mRNA synthesis and enabling efficient production for 
therapeutic applications, including mRNA vaccines and protein thera-
peutics [13].

Although these fusion constructs generate abundant mRNA yields, 
they often fail to achieve the anticipated levels of protein expression, 
which emphasizes the need for further optimization. One way to over-
come these limitations is engineering poly(A) polymerases to extend 
mRNA tails, resulting in moderate increases in protein yield [14]. 
Additionally, directed evolution of single-chain T7 RNAP variants fused 
with ASFV capping enzymes has enhanced activity by up to four-fold in 
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mammalian cells [15].
The advent of machine learning (ML)-based protein engineering 

[16,17] provides opportunities for the rapid exploration of very large 
sequence spaces [18,19], even relative to methods like directed evolu-
tion, which is sometimes constrained by the limitations of local optima 
in complex fitness landscapes [20]. For example, EVOLVEpro [21] uti-
lized AI-driven in silico evolution to engineer T7 RNAP variants opti-
mized for in vitro applications, achieving enhanced RNA yield, 
improved mRNA translation efficiency, and reduced immunogenicity. In 
parallel, Rosetta-based structural modeling assessed the impact of amino 
acid substitutions on T7 RNAP stability and function [5]. This approach 
identified the G47A + 884G variant, which reduced immunostimulatory 
double-stranded RNA (dsRNA) formation by altering RNAP-RNA in-
teractions. These changes lowered cytokine responses in mammalian 
systems and streamlined mRNA purification.

We have previously used directed evolution to identify improve-
ments to a fusion between T7 RNAP and a cappase enzyme that 
improved gene expression in yeast [15], ultimately identifying an 
ASFVCE(443):T7 RNAP(443) variant that shows a 5-fold improvement 
in activity relative to the original wild-type fusion combination. Now, 
using a ML framework that integrated structure-based (MutCompute 
[22,23]), stability-based (Stability Oracle [24]), and evolution-based 
(MutRank [25]) predictions, we have generated a unique set of poten-
tial sequence substitutions relative to other algorithms [5,15,21]. 
Experimentally validating improvements to gene expression in yeast led 
to additive combinations that improved overall activity, allowing effi-
cient and rapid enzyme optimization. In consequence, we identified a 
variant, EvoBMCE:EvoT7, that contains nine targeted substitutions and 
exhibits more than a 10-fold improvement in activity in yeast. These 
mutations, combined with those previously identified through directed 
evolution, yielded a polymerase fusion (EvoBMCE:EvoT7(443)) that 
demonstrated an almost 13-fold improvement in activity.

2. Materials and methods

2.1. Strains and culture media

For plasmid construction and maintenance, Escherichia coli NEB 5- 
alpha was cultured in lysogeny broth (LB) medium, which contained 
10 g/L tryptone, 5 g/L yeast extract, and 10 g/L NaCl, at 37 ◦C with 
agitation at 225 rpm. When necessary, cultures were supplemented with 
100 μg/mL ampicillin or 50 μg/mL kanamycin for plasmid selection. For 
yeast-based experiments, Saccharomyces cerevisiae BY4741 (MATα; 
his3Δ1; leu2Δ0; met15Δ0; ura3Δ0) and its ΔGal2 derivative [15] were 
utilized. Yeast strains were cultivated in yeast extract peptone dextrose 
(YPD) medium, consisting of 10 g/L yeast extract, 20 g/L peptone, and 
20 g/L glucose. For selective growth, cultures were maintained in syn-
thetic defined (SD) medium (Takara Bio), supplemented with drop-out 
amino acids (BUFFERAD) at 30 ◦C with shaking at 225 rpm. Induction 
of gene expression was performed using yeast nitrogen base (YNB) 
medium lacking amino acids and carbon sources, supplemented with 
ammonium sulfate, raffinose, and galactose (Sigma-Aldrich). To ensure 
reproducibility, all chemicals and media were of the highest available 
purity.

2.2. Plasmid construction

Yeast-codon-optimized parts encoding all target proteins were ob-
tained from Twist Bioscience (detailed sequences available in Table S1). 
Assembly of DNA fragments were performed using the NEBuilder HiFi 
DNA Assembly Master Mix (New England Biolabs) in accordance with 
the manufacturer’s protocol. PCR amplification was conducted with the 
Q5 High-Fidelity 2× Master Mix (New England Biolabs), and the 
resulting products were purified using the Monarch® PCR & DNA 
Cleanup Kit (New England Biolabs). When necessary, DNA fragments 
were excised and extracted using the Monarch® DNA Gel Extraction Kit 

(New England Biolabs). Primers were designed via SnapGene 8.0.1 and 
synthesized by IDT (USA). Plasmid preparations were carried out using 
the Monarch® Plasmid Miniprep Kit (New England Biolabs). Site- 
directed mutagenesis was introduced using the Q5 Site-Directed Muta-
genesis Kit (New England Biolabs). To verify plasmid construction, 
sequencing was performed by Plasmidsaurus (USA).

2.3. Yeast transformation

Transformation of S. cerevisiae strains was performed using the Yeast 
Transformation Kit (YEAST1, Sigma-Aldrich) according to the manu-
facturer’s protocol. For genomic integration, 2 μg of linearized plasmid 
(digested with NotI-HF, New England Biolabs) was introduced into 50 μL 
of competent yeast cells. In the case of plasmid-based transformation, 1 
μg of circular plasmid DNA was used per 50 μL of yeast cells. Following 
transformation, the cells were spread on SD-URA-HIS selection plates 
and incubated at 30 ◦C for up to 72 h to enable colony formation. Suc-
cessful genomic integration was verified through colony PCR, followed 
by sequencing analysis to confirm correct insertion.

2.4. Flow cytometry characterization

To evaluate fluorescence levels, engineered yeast strains were 
cultured in SD-URA-HIS medium at 30 ◦C for 48 h, allowing them to 
reach stationary phase. Cultures were subsequently diluted 1:10 in yeast 
nitrogen base (YNB) medium supplemented with 5% D-galactose for 
GAL1 promoter induction and 2% D-raffinose as an additional carbon 
source. Although 2% D-Galactose is commonly used for induction, 5% is 
used with the Gal2 transporter knockout to better control fusion protein 
expression [15]. The cultures were incubated overnight at 30 ◦C with 
agitation in a 96-well plate shaker. Following incubation, cells were 
harvested by centrifugation, washed twice with phosphate-buffered sa-
line (PBS), and resuspended in fresh PBS. For flow cytometric analysis, 
samples were further diluted in PBS and transferred into a 96-well plate 
for automated analysis using an SA3800 Spectral Cell Analyser (Sony 
Biotechnology). Single-cell populations were gated based on forward 
scatter (FSC) and side scatter (SSC) parameters in a logarithmic scale, 
with 10,000 events recorded per sample. ZsGreen fluorescence was 
detected using a 488 nm excitation laser and a 495–510 nm emission 
filter. ZsGreen, a tetrameric green fluorescent protein derived from 
Zoanthus sp., was used as the reporter gene to monitor gene expression. 
Due to its high brightness and expression efficiency in S. cerevisiae [26], 
it was selected as a suitable reporter gene in our yeast-based screening 
system. The geometric mean fluorescence from three independent rep-
licates was used for comparative analysis, with fold changes calculated 
as the ratio of mean fluorescence intensity of each T7 RNAP or BMCE 
variant relative to the wild-type control. Data analysis and processing 
were performed using FlowJo (version 10.10.0).

2.5. Fluorescence microscopy

Yeast cells were harvested by centrifugation, washed, and resus-
pended in distilled water (DW). The resulting cell suspensions were 
observed using a Zeiss Axiovert 200 M inverted microscope equipped 
with a 63× objective lens. Green fluorescence was detected using a FITC 
filter set, with an exposure time of 11 s. Imaging was performed at the 
Center for Biomedical Research Support Microscopy and Imaging Fa-
cility at The University of Texas at Austin (RRID:SCR_021756).

2.6. ML-predictions for T7 RNAP engineering

T7 RNA polymerase (T7 RNAP) transitions between two key 
conformational states during its catalytic cycle: the initiation complex 
(IC) and the elongation complex (EC). The IC is unstable and produces 
short RNA fragments, known as abortive transcripts, through a process 
called abortive cycling (PDB: 1QLN, 1CEZ, 2PI4, 2PI5), whereas the EC 
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is stable and processive (PDB: 1S0V, 1S76, 1S77, 1H38, 1MSW) [27,28]. 
We were agnostic regarding whether improvements to the IC or the EC 
might best enhance the overall activity of the polymerase in yeast, and 
thus used MutCompute models [22,23] to generate predictions by 
analyzing the nine crystal structures of T7 RNAP. Both MutCompute (a 
convolutional neural network [22], https://mutcompute.com) and 
MutComputeX (a residual neural network [23], https://github.com/d 
anny305/MutComputeX) were used to analyze each of the nine PDB 
structures. Point mutants were selected based on high probability ratios, 
calculated as either the log2 ratio (for MutCompute) or the natural log 
ratio (for MutComputeX) of the probability score of the highest-ranked 
amino acid to that of the wild-type residue at the same position 
(log2(mutAA probability

wtAA probability ) for MutCompute, log(mutAA probability
wtAA probability ) for MutCom-

puteX). The choice of log base reflects differences in model design: 
MutCompute, optimized for discrete probability comparisons, applies 
log₂ for intuitive interpretation in terms of fold changes, while Mut-
ComputeX, trained to predict continuous stability changes (e.g., ΔTm, 
ΔΔG), uses the natural log to better correlate with thermodynamic pa-
rameters. These values were averaged across multiple structures, irre-
spective of whether the structure was an IC or an EC (Table S2). We 
initially selected 20 mutants from the MutCompute predictions and 20 
mutants from the MutComputeX predictions. In general, predictions by 
MutComputeX yielded more consistent results across multiple input 
structures. To explore whether simplifying the input representation 
might uncover additional functional variants, we tested a modified 
configuration of MutComputeX—referred to as MutComputeX.2—by 
excluding charge and solvent-accessible surface area (SASA) features. 
Although overall predictive performance was not enhanced, one bene-
ficial variant (A584K) was identified and incorporated into high- 
performing combinations, suggesting the potential utility of this 
configuration in expanding sequence space coverage. All variants were 
experimentally tested, and mutations were stacked based on their rela-
tive activities in yeast. From the top five single substitutions, all possible 
double, triple, quadruple, and quintuple substitutions were assayed, and 
the best quadruple and quintuple substitutions were carried forward.

To further evaluate predictive models, we also employed the pro-
gram MutRank [25] to identify mutations with potential functional 
benefits. MutRank leverages EvoRank [25], a self-supervised learning- 
based ranking framework, which incorporates evolutionary information 
from multiple sequence alignments (MSAs) to prioritize beneficial mu-
tations. Unlike traditional wild-type accuracy-based models, which 
focus on recovering known amino acids, EvoRank ranks amino acid 
substitutions based on their evolutionary likelihood, improving its 
ability to predict functionally advantageous mutations. MutRank was 
run on ten PDB structures, including the nine used in MutCompute 
predictions (1QLN, 1CEZ, 2PI4, 2PI5, 1S0V, 1S76, 1S77, 1H38, and 
1MSW), with the addition of 1ARO, which represents T7 RNAP com-
plexed with T7 lysozyme. MutRank was implemented based on the 
methodology described in [25], without additional modification.

Variants were ranked based on their pred_prob values. MutRank 
employs a ranking-based learning framework, referred to as EvoRank 
loss, to identify amino acid substitutions that align more closely with 
evolutionary constraints and functional requirements. Unlike MutCom-
pute and MutComputeX, which assess mutations through absolute 
probability ratios, MutRank instead estimates the relative ranking of 
amino acids at a given site. This is formulated as: 

ri(aa+, aa− ) =
PMSA

j (aa+)

PMSA
j (aa+) + PMSA

j (aa− )
−

1
2 

where PMSA
j (aa+) and PMSA

j (aa− ) denote the probability values derived 
from multiple sequence alignments (MSAs) for two competing amino 
acids at position j. Unlike previous models that focused on predicting 
individual amino acid probabilities, MutRank learns the evolutionary 
hierarchy of amino acids, enabling the model to capture functional 

fitness landscapes beyond conventional probability-based approaches. 
In this context, pred_prob values generated by MutRank do not represent 
absolute confidence scores but rather the relative probability that a 
given mutation would be observed in an evolutionary setting. A higher 
pred_prob suggests that the model assigns greater likelihood to the 
mutated residue over alternative substitutions, reflecting both evolu-
tionary constraints inferred from sequence conservation patterns and 
functional fitness predicted from structural stability data. This transition 
from probability-based assessment to ranking-based evaluation facili-
tates a more biologically meaningful approach to prioritizing mutations, 
particularly in scenarios where evolutionary selection pressures extend 
beyond thermodynamic stability alone. Those variants with pred_prob 
scores higher than 2 were selected for manual examination via visuali-
zation software; twelve mutations were ultimately chosen based on their 
apparent ability to better fit into the chemical microenvironment (based 
on evaluation of hydrophobicity, solvent-accessibility, flexibility, and 
steric hindrance) compared to the wild-type amino acid. The MutRank 
predictions were further introduced into the best quadruple and quin-
tuple mutant backgrounds, previously identified through MutCompute 
predictions, and subsequently assayed. Overall, a total of 72 single- 
substitution variants were predicted using four ML mod-
els—MutCompute (20 variants), MutComputeX (20), MutComputeX.2 
(20), and MutRank (12)—and all were experimentally tested in yeast. 
These variants were selected based on model-specific scoring metrics 
and manually evaluated for structural plausibility. Their predicted 
scores and annotations are summarized in Table S2.

2.7. ML-predictions for BMCE engineering

To improve the activity of BMCE, we implemented a systematic en-
gineering approach incorporating MutCompute [22], MutRank [25], 
and Stability Oracle [24] (https://github.com/danny305/StabilityOracl 
e) predictions. This method facilitated the discovery of mutations with 
potential functional benefits by integrating machine learning-based 
structure-function analysis. For the initial stage, MutCompute was 
applied to analyze BMCE, using its AlphaFold 2 [29]-predicted structure 
as the input model. The predictions generated by MutCompute were 
ranked based on the log ratio comparing wild-type residues to potential 
substitutions. In addition, MutRank was employed to independently 
identify 20 single mutations from its prediction dataset, selecting vari-
ants with a high probability of contributing to BMCE activity. Finally, a 
distinct set of 20 mutations was selected using Stability Oracle [24], a 
graph-transformer-based model designed to assess the thermodynamic 
stability (ΔΔG) of protein variants. In contrast to previous methods such 
as Rosetta [30] and FoldX [31], which require explicit modeling of both 
wild-type and mutant structures, Stability Oracle predicts stability 
changes using a structure-informed approach that integrates local 
structural data with graph-based attention mechanisms. This method 
uses a graph-transformer architecture, where atoms are represented as 
nodes and atomic distances are treated as edges, guiding the attention 
mechanism to focus on relevant structural features. The core prediction 
is based on thermodynamic permutations (TP), a technique that en-
hances ΔΔG predictions by leveraging the Gibbs free energy state- 
function property. ΔΔG predictions indicate stabilizing or destabiliz-
ing mutations, where negative values represent stabilizing mutations 
and positive values indicate destabilizing mutations. The prediction 
model is based on the following equation: 

△△G = W⋅(emut − ewt)

In this equation, emut and ewt represent the embedding vectors of the 
mutated and wild-type amino acids, respectively, capturing their 
structural and chemical properties. The difference between these em-
beddings is scaled by a learned weight matrix W, transforming the dif-
ference into a prediction of the thermodynamic stability change (ΔΔG). 
ΔΔG quantifies the relative impact of a mutation on stability, 
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considering the local structural context. A higher ΔΔG suggests a 
destabilizing effect, while a lower ΔΔG indicates stabilization. This 
transition from physics-based methods to graph-based learning provides 
a more biologically relevant approach for predicting mutations, partic-
ularly in cases where evolutionary pressures go beyond simple ther-
modynamic calculations. In total, the final BMCE dataset comprised 60 
mutations, with 20 mutations selected from each of MutCompute, 
MutRank, and Stability Oracle. Among them, 58 unique mutations were 
chosen (with two overlapping across methods) to maximize BMCE ac-
tivity and efficiency. A detailed list of selected mutations and their 
predicted scores can be found in Table S3. For BMCE, we employed 
complementary models—MutCompute, MutRank, and Stability Ora-
cle—due to the absence of experimentally resolved structures, allowing 
us to integrate structure-, evolution-, and stability-based predictions.

3. Results

3.1. Engineering of T7 RNA polymerase:cappase based on structurally- 
aware machine learning predictions

Machine learning methodologies offer transformative opportunities 
to explore protein sequence space more deeply, enabling the identifi-
cation of key residues critical for protein function, even when located 
outside the traditional active site. Many of these approaches model the 
relationship between protein structure and function, predicting the ef-
fects of mutations on protein activity or stability [16,32,33]. In this 
study, we employed MutCompute, a structure-informed machine 
learning algorithm for protein engineering [22,34,35], to optimize T7 
RNAP for improved function in yeast. Both MutCompute [22], a con-
volutional neural network, and MutComputeX [23], a residual neural 
network, were applied to analyze multiple structural conformations 
from the Protein Data Bank (PDB), incorporating both initiation com-
plex (IC) and elongation complex (EC) states (PDB IDs: 1QLN, 1CEZ, 
2PI4, 2PI5 for IC; 1S0V, 1S76, 1S77, 1H38, and 1MSW for EC). To 
mitigate potential biases introduced by multiple structural representa-
tions within a single PDB file, we applied the model to each chain 
separately and averaged the resulting per-residue prediction scores 
across chains. We attempted to identify mutations that were predicted 
across multiple different structure files, including both the IC and the 
EC, and point mutants were selected based on high log ratio probability 
comparisons relative to the wild-type residue. To further improve the 
robustness of our predictions, we evaluated whether excluding charge 
and solvent-accessible surface area (SASA) as input features would 
impact the stability-focused predictions of T7 RNAP. This led to the 
development of MutComputeX.2, which generated an additional set of 
20 predicted variants without these input features.

These predictions ultimately led to 60 single variants spanning 56 
positions (20 from MutCompute, 20 from MutComputeX, and 20 from 
MutComputeX.2), with four positions (L534, V710, L853, and H854) 
having two, different predicted substitutions. These variants were then 
incorporated into a previously studied [11–13,15] fusion protein con-
sisting of T7 RNAP and the African Swine Fever Virus (ASFV) NP868R 
mRNA capping enzyme (Table S2). Interestingly, we observed that 
MutCompute primarily predicted mutations in the IC (14 out of 20), 
whereas MutComputeX predictions were more balanced between the IC 
(9 out of 20) and EC (11 out of 20). It is possible that MutComputeX, 
which employs a residual neural network, may have captured higher- 
order structural dependencies that are relevant to both IC and EC 
states. IC and EC classifications were used solely to annotate the struc-
tural origin of each prediction and were not used to stratify or interpret 
the results of functional screening experiments.

The ASFV NP868R cappase was initially chosen based on its 
demonstrated ability to enhance protein expression in both mammalian 
systems [11,12] and in yeast [15]. The fusion domains contained an 
SV40 nuclear localization signal (NLS), were linked by a GS linker, and 
were expressed under the control of the yeast GAL promoter [15] 

(Fig. 1A). To ensure proper transcriptional regulation, a hepatitis delta 
virus (HDV) ribozyme was positioned upstream of the PT7 promoter. 
This fusion architecture was adopted based on previous studies report-
ing that separate expression of mRNA capping enzymes and T7 RNAP 
resulted in reduced transcriptional and translational efficiency in 
eukaryotic systems. In contrast, physically linking the two enzymes 
improves co-transcriptional capping and significantly enhances protein 
expression [11,12]. Fusion proteins carrying the T7 RNAP variants were 
integrated into the HO locus of the yeast chromosome. To determine the 
activity of the fusion proteins in the ΔGal2 derivative yeast strain, in-
duction was carried out with 5% D-Galactose. Following induction, the 
variants transcribed the ZsGreen reporter gene under the control of the 
T7 RNAP promoter on an episomal reporter plasmid (pT7P-ZsGreen; 
Fig. 1A and B). A null variant, the substitution Y639A [36,37], was used 
to validate the system as a negative control (Fig. 1C).

Out of the 60 single variants tested, five (Q58S, S128V, A584K, 
V609S, and W698F) led to up to 1.5-fold increases in expression of the 
ZsGreen reporter gene compared to wild-type (WT) T7 RNAP (Fig. 1C). 
These beneficial mutations originated from different MutCompute 
models: V609S from MutCompute; Q58S, S128V, and W698F from 
MutComputeX; and A584K from MutComputeX.2. We then systemati-
cally combined the five beneficial single variants (Q58S, S128V, A584K, 
V609S, and W698F) to generate all possible double, triple, quadruple, 
and quintuple combinations, resulting in 26 unique multi-mutant vari-
ants for further analysis (Fig. 1D). In general, the combinations showed 
increasing activity, with the quadruple variant T7 RNAPQ58S/A584K/ 

V609S/W698F and the quintuple variant (T7 RNAPQ58S/S128V/A584K/V609S/ 

W698F) having 3.9- and 3.5-fold increases in activity, respectively, rela-
tive to WT ASFVCE:T7 RNAP (Fig. 1D). Fluorescence microscopy anal-
ysis was performed to qualitatively assess protein expression. The WT, 
null, quadruple (Q58S/A584K/V609S/W698F), and quintuple (Q58S/ 
S128V/A584K/V609S/W698F) variants of ASFVCE:T7 RNAP were 
examined. Consistent with the quantitative fluorescence data, the 
quadruple and quintuple variants exhibited markedly stronger green 
fluorescence signals compared to the WT, whereas the null variant 
showed minimal fluorescence. These observations further confirm that 
the selected mutations enhance the expression of the ZsGreen reporter 
gene (Fig. S1).

3.2. Further engineering of T7 RNAP based on evolutionarily aware 
machine learning predictions

As has been seen with numerous other proteins [22,23,34,35], 
MutCompute and other structure-aware machine learning algorithms 
were able to identify substitutions beneficial for activity, and these 
substitutions could generally be stacked in a roughly additive way. 
However, the exhaustive procedure we used for stacking (all combina-
tions of the best variants) becomes less feasible as the number of mu-
tations (and thus the number of paths for stacking) increases. We 
therefore employed MutRank, a self-supervised learning-based ranking 
framework that prioritizes beneficial mutations based on evolutionary 
likelihood [25] based on multiple sequence alignment (MSA) data. We 
hypothesized that MutRank might see additional mutations that Mut-
Compute and other structurally aware algorithms could not.

To test this hypothesis, we selected twelve MutRank-predicted single 
variants (Table S2) and introduced them individually into the previous 
quadruple and quintuple backgrounds, which served as scaffolds for the 
next round of engineering. Of the twelve single substitutions added to 
the quadruple background (T7 RNAPQ58S/A584K/V609S/W698F), five 
(C125I, C347P, Q404L, N419T, and Q786L) exhibited increased activity 
(Fig. 2A). An additional 12 combinations were evaluated, and three 
additional variants demonstrated significant improvements in activity, 
with the best variant containing both Q404L and Q786L, and having a 
1.6-fold increase in activity compared to the original quadruple variant, 
corresponding to a 6.2-fold increase relative to ASFVCE(WT):T7 RNAP 
(WT) (Fig. 2A). We designated this variant EvoT7, and carried it forward 
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into further experiments, as described below. A similar approach was 
applied using the quintuple variant as the parent enzyme, and quintu-
pleC347P/N419T exhibited the highest activity, with a 5.2-fold increase 
relative to ASFVCE(WT):T7 RNAP(WT) (Fig. 2B).

3.3. Identification of a more highly active virus-derived mRNA capping 
enzyme

The addition of a 5′-m7G cap to eukaryotic mRNA is crucial, serving 
to prevent degradation and facilitate translation [38]. Previous research 
has identified several mRNA capping enzymes that can be used in 
mammalian cells and compared their activities through biochemical and 
functional assays [11]. Among these, ASFVCE exhibited the highest 

activity and was subsequently engineered to enhance its performance in 
yeast-based expression systems [15]. While these modifications 
improved its functionality, they were still based on a single viral source, 
prompting an investigation into whether alternative wild-type viral 
capping enzymes might exhibit even greater activity in yeast. To identify 
a single-subunit RNA capping enzyme with higher activity than the 
ASFVCE, we screened nine promising capping enzyme (CE) fusion can-
didates [39], again using our fluorescent reporter system (Fig. 3A and 
B). Among the nine tested enzymes, MACE and APMCE showed minimal 
or undetectable reporter gene expression, comparable to the null mutant 
of ASFVCE (ASFVCEK282N) and the negative control (NC), which con-
sisted of WT T7 RNAP without a capping enzyme (Fig. 3C and D). The 
enzymes FCE, PCE, BSVCE, GMCE, and NCE displayed activity levels 

Fig. 1. Engineering T7 RNA polymerase using structure-aware machine learning predictions for enhanced target gene expression. (A) Two-plasmid system for 
screening T7 RNAP variants. The expression plasmid, containing the ASFVCE:T7 RNAP fusion protein, was selected using the HIS3 marker, while the reporter 
plasmid, encoding the ZsGreen reporter gene, was selected using the URA3 marker. Both plasmids were transformed into a ΔGal2 derivative of S. cerevisiae for 
screening gene expression. (B) Schematic representation of the ASFVCE:T7 RNAP expression cassette and reporter plasmid. T7 RNAP variants fused with ASFVCE via 
a GS linker were expressed under the control of the PGal promoter. The ZsGreen reporter gene, controlled by the PT7 promoter, was expressed from a plasmid 
maintained using the 2-micron system. (C) Screening of single-point mutations in T7 RNAP. A total of 60 single-point mutations were introduced into T7 RNAP fused 
with ASFVCE to evaluate their impact on reporter gene expression. (D) Screening of combinatorial mutations in T7 RNAP. A total of 26 combinatorial mutations, 
including double, triple, quadruple, and quintuple mutations, were introduced into T7 RNAP fused with ASFVCE to assess their effect on reporter gene expression. For 
each mutation, fold change was calculated as the ratio of ZsGreen expression, measured by flow cytometry, relative to WT T7 RNAP (set as 1) under identical 
galactose induction conditions. The “Null” construct, containing the Y629A mutation, was used as a negative control since this mutation impairs T7 RNAP activity. 
Each dot represents the average value obtained from a transformation experiment, with three biological replicates per transformation. Bar graphs indicate the mean 
and standard deviation (SD).

Fig. 2. Engineering quadruple and quintuple T7 RNAP variants using evolution-aware machine learning predictions. (A) Screening of single and combinatorial 
mutations in the quadruple T7 RNAP variant (T7 RNAPQ58S/A584K/V609S/W698F). A total of 24 mutations, including single, double, and triple mutations, were 
introduced into the quadruple T7 RNAP variant fused with ASFVCE to assess their effect on reporter gene expression. (B) Screening of single and combinatorial 
mutations in the quintuple T7 RNAP variant (T7 RNAPQ58S/S128V/A584K/V609S/W698F). A total of 22 mutations, including single and double mutations, were introduced 
into the quintuple T7 RNAP variant fused with ASFVCE to evaluate their impact on reporter gene expression. Fold change was determined by comparing ZsGreen 
fluorescence intensity, as measured via flow cytometry, relative to WT T7 RNAP (set as 1) under identical galactose induction conditions. The fold change of the 
quadruple and quintuple T7 RNAP variants is shown as a horizontal dashed line in (A) and (B), respectively. Each dot represents the average value from a trans-
formation experiment, with three biological replicates per transformation. Bar graphs indicate the mean and standard deviation (SD).
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comparable to or slightly lower than ASFVCE, while BMCE (from Bra-
zilian Marseillevirus) exhibited an activity level around 2-fold higher 
than the previously used ASFVCE.

As with T7 RNA polymerase, we pursued further enhancement of 
BMCE activity through ML-guided predictions. Starting from the 
AlphaFold 2-prediced structure of BMCE, we applied three ML models – 
MutCompute, MutRank, and Stability Oracle – to predict beneficial 
mutations. Each model identified 20 mutations, and after removing 
duplicates (S515G, H786F), a total of 58 unique single variants were 
generated (Table S3). To evaluate the activity of these variants, we 
employed the same two-plasmid system as in Fig. 1 (Fig. 4a). Among the 
58 single variants, seven (D59E, M165L, S199A, N267W, Q426V, 
Q426Y, and D582F) exhibited up to 1.4-fold increased ZsGreen expres-
sion compared to WT BMCE (Fig. 4B). As before, the top-performing 
single mutants were combined to generate all possible double mu-
tants, resulting in 20 variants (Fig. 4C). Two of the double mutants 
(M165L/Q426Y and S199A/Q426Y) yielded over a 2-fold increase in 
activity compared to WT BMCE. Additionally, four double mutants 
(M165L/Q426V, M165L/D582F, S199A/D582F, and N267W/Q426V) 
exhibited moderate improvements of over 1.5-fold (Fig. 4C). Based on 
the six selected double mutants that exhibited enhanced activity, we 
systematically generated 13 triple mutants. Three of these variants had 

additive improvements, up to a 3-fold final increase in activity. Further 
stacking of quadruple and quintuple mutants did not yield further im-
provements in activity.

3.4. Combining the best engineered cappase and T7 RNAP enzymes

The triple variant BMCES199A/N267W/Q426V (hereafter referred to as 
EvoBMCE) was chosen for further testing with improved T7 RNAP 
variants. Similarly, in order to best combine previous directed evolution 
efforts with substitutions garnered from machine learning, we generated 
EvoT7(443), which contained 12 mutations (6 from T7 RNAP(443) and 
6 from EvoT7). Fusion proteins were constructed using the most effec-
tive capping enzymes (ASFVCE(443) and EvoBMCE) and T7 RNAP 
variants (T7 RNAP(443), EvoT7, and EvoT7(443)), derived either from 
directed evolution, and their activities were assessed (Fig. 5A) relative to 
suitable controls. Gene expression was evaluated by measuring ZsGreen 
fluorescence normalized to OD600nm, using ASFVCE(WT)-T7 RNAP(WT) 
as the baseline (set to 1).

Significant further enhancements in gene expression efficiency 
relative to previous cappase-polymerase combinations were found, and 
these were due to both improvements in the cappase and improvements 
in the polymerase (Fig. 5B). We had already observed a roughly 2-fold 

Fig. 3. Screening and characterization of single-subunit CEs. (A) Phylogenetic tree of single-subunit CE candidates. Phylogenetic relationships among 10 viral- 
derived single-subunit CEs, including ASFVCE and other enzymes, are shown. (B) Schematic representation of the CE:T7 RNAP expression cassette and reporter 
plasmid. Single-subunit CE variants were fused to WT T7 RNAP via a GS linker and expressed under the control of the PGal promoter. (C) Screening of single-subunit 
CEs. A total of 10 viral-derived single-subunit CEs, including WT ASFVCE and the ASFVCE (K282N) null mutant, were tested for their impact on reporter gene 
expression. Fold change in ZsGreen fluorescence was determined by normalizing each CE variant to the WT ASFVCE (set as 1), with measurements obtained under 
identical galactose induction conditions via flow cytometry. Each dot represents the average value obtained from three colonies per transformation, and the bar 
graphs indicate the mean and standard deviation (SD). (D) Evaluation of ZsGreen reporter gene fluorescence. Flow cytometry histograms illustrate the fluorescence 
intensity distribution, where a rightward shift represents increased CE activity relative to the negative control. ASFVCE(K282N) served as the null mutant control, 
displaying baseline fluorescence levels, while the negative control (NC) represented WT T7 RNAP expressed without a capping enzyme.
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improvement of activity relative to wild-type when BMCE cappase was 
used in place of the ASFVCE enzyme (Fig. 3C). The introduction of the 
improved EvoBMCE further improved transcriptional efficiency, up to 
5.6-fold above the previously developed wild-type enzyme combination 
of ASFVCE:T7 RNAP. These improvements were similar to those seen in 
fusions between the evolved ASFVCE(443) cappase and the wild-type 
enzyme. The use of improved T7 RNAP variants also proved to be 
roughly additive, with the directed evolution (443) and machine 
learning (EvoT7) variants both leading to 2- to 3-fold improvements 
over parental enzyme combinations. Remarkably, the directed evolution 
and machine learning variants could be stacked together (EvoBMCE- 
EvoT7(443)) to attain even higher activity, upwards of an overall 7-fold 
improvement over the wild-type enzyme combination (BMCE-T7 RNAP 
(WT)) and greater than 12-fold improvement over the previously stud-
ied ASFVCE(WT)-T7 RNAP(WT) fusion. While direct comparisons were 
not made in the same experiment, stepwise gains observed between the 
non-fusion control (NC), the original fusion enzyme, and the final 
construct suggest a cumulative enhancement exceeding 100-fold.

4. Discussion

In this study, we employed a machine learning (ML)-driven approach 
to optimize fusion constructs between cappase enzymes (either ASFVCE 
or BMCE) and T7 RNA polymerase (T7 RNAP) for improved transcrip-
tion and gene expression in yeast. MutCompute, a structure-based ML 
model, was initially used to predict beneficial mutations by evaluating 
multiple T7 RNAP conformations derived from Protein Data Bank (PDB) 
structures. Specifically, MutCompute, a convolutional neural network- 
based model, and MutComputeX, a residual neural network-based 
approach, were applied to predict mutations that could enhance poly-
merase function by analyzing structural features of both the initiation 
complex and elongation complex states. The model’s predictions were 
subsequently filtered to select the most promising variants based on a 
log-ratio scoring system, prioritizing mutations predicted to be more 
favorable than the wild-type residue. Additionally, MutComputeX.2 was 
developed by modifying input features—excluding charge and solvent- 
accessible surface area (SASA)—to assess whether this adjustment 

Fig. 4. Engineering BMCE for enhanced target gene expression. (A) Schematic representation of the BMCE:T7 RNAP expression cassette and reporter plasmid. BMCE 
variants fused to T7 RNAP via a GS linker were expressed under the control of the PGal promoter. (B) Screening of single-point mutations in BMCE. A total of 58 
single-point mutations were introduced into BMCE fused with T7 RNAP to evaluate their impact on reporter gene expression. (C) Screening of combinatorial mu-
tations in BMCE. A total of 36 combinatorial mutations, including double, triple, quadruple, and quintuple mutations, were introduced into BMCE fused with T7 
RNAP to assess their effect on reporter gene expression. For each mutation, fold change was calculated as the ratio of ZsGreen expression, measured by flow 
cytometry, relative to WT BMCE (set as 1) under identical galactose induction conditions. Each dot represents the average value obtained from a transformation 
experiment, with three biological replicates per transformation. Bar graphs indicate the mean and standard deviation (SD).
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could improve stability-focused predictions.
All machine learning models—including MutCompute, MutCompu-

teX, MutRank, and Stability Oracle—were used solely for inference, 
without any retraining or fine-tuning. Each model was applied using its 
default settings as described in the original publications or associated 
repositories, and all predictions were performed using standard labo-
ratory computing resources. These ML algorithms contributed distinct 
yet complementary insights, and overall described a broad fitness 
landscape for experimental validation. MutCompute and its variants 
focused on structural constrains, MutRank prioritized evolutionarily 
favorable changes, and Stability Oracle identified stability-enhancing 
substitutions. Each program eventually identified useful, non- 
overlapping substitutions. For T7 RNAP, one improved substitution 
originated from MutCompute, three were from MutComputeX, and one 
was from MutComputeX.2. The relative underperformance of Mut-
ComputeX.2 compared to MutComputeX suggests that removing charge 
and SASA features, both of which play critical roles in protein stability 
and function [40,41], may have impeded the selection of beneficial 
substitutions. Similarly, for the BMCE cappase variants, seven beneficial 
mutations were found: one from MutCompute, one from MutRank, and 
five from Stability Oracle. Notably, Stability Oracle was not applied to 
T7 RNAP in this study, as multiple high-resolution crystal structures 
enabled structure-rich modeling using MutCompute, MutComputeX, 
and MutRank. In contrast, it was applied to BMCE, which lacked an 
experimentally determined structure. The minimal overlap among top- 
ranked variants suggests that each model encodes distinct selection 
preferences.

Beyond model-specific variation, our ML-guided designs also 
diverged substantially from prior studies. Interestingly, our machine- 
learning-based optimizations of T7 RNAP led to significantly different 
results compared to previous studies (Table S4). In particular, 
EVOLVEpro-assisted directed evolution led to epT7 (T3M/G47A/ 
E643G) [21]; structure-based rational engineering with Rosetta resulted 
in G47A/884G [5]; and high-throughput mutagenesis coupled with 
FACS-based selection led to our previous best cappase-polymerase 
combination, v443 (N131K/L261M/H300R/R307H/Q648R//H772R) 
[15]. Along the paths to each of these polymerases, numerous single 
mutations were tested and either incorporated or discarded (Fig. S2): 
epT7 tested 42 single substitutions, while G47A/884G tested 21 single 
substitutions; v443 accumulated mutations iteratively over the course of 
directed evolution. Only one mutation (H300R) overlapped between our 
EvoT7 and v443, while no exact residue matches were observed between 

EvoT7 and epT7 or G47A/884G (Fig. S2A). When considering only po-
tential sites for substitution, as opposed to exact substitutions (Fig. S2B), 
EvoT7 contained 68 unique mutation sites, epT7 had 33, G47A/884G 
had 8, and v443 accumulated 20 by the conclusion of the directed 
evolution process. EvoT7 shared three mutation sites (V134, V177, and 
V273) with epT7, one with v443 (H300), and none with G47A/884G.

To better understand the structural basis for the improved perfor-
mance of EvoT7 and EvoBMCE, we generated an in-silico enzyme 
structure with AlphaFold 3 [42] and examined the atomic interactions 
gained or lost compared to either the crystal structure of WT T7 RNAP 
(PDB: 1H38) or the AF 3 wild-type BMCE structure (Fig. S3). AlphaFold 
2-predicted structures were used as inputs for ML-guided variant pre-
diction, as these predictions were performed prior to the release of 
AlphaFold 3 and were optimized for compatibility with model input 
formats. In contrast, AlphaFold 3 was used post hoc for structural 
visualization and comparison to help interpret atomic-level changes in 
evolved variants. Thus, AlphaFold 2 and AlphaFold 3 served distinct 
purposes in the study. To visualize the distribution of predicted muta-
tions, structural models of EvoT7 and EvoBMCE were annotated with 
ML model-specific color codes (Fig. S3).

The six mutation sites (Q58S/Q404L/A584K/V609S/W698F/ 
Q786L) in EvoT7 were distributed throughout T7 RNAP, and possible 
structural improvements span a gamut of chemistries (Fig. S3A). It 
seems that the Q58S substitution may create a stable hydrogen bond 
with Ser58 (Fig. S3B), and V609S may form hydrogen bonds with 
Asn592 and Gln669 (Fig. S3B). The Q404L substitution enhances the 
hydrophobic core formed by Phe400, Phe408, and Phe432 (Fig. S3B), 
while Q786L places a hydrophobic residue within the greasy pocket 
formed by Met549, Thr729, Pro730, Phe782, and Val841 (Fig. S3B). In 
contrast, A584K mutation installs a positively charged lysine within the 
solvent-exposed domain and allows polar interactions with nearby polar 
residues (Glu580, Asp585, and Asn588) or water molecules (Fig. S3B).

It is more difficult to interpret improvements to EvoBMCE, as there is 
no known structural determination of this enzyme. In the two predicted 
BMCE structures (EvoBMCE and WT BMCE), S199A, N267W, and 
Q426V appear to enhance the hydrophobic core of the enzyme (Fig. S3C 
and D). It is interesting to note that the mutations S199A, N267W, and 
Q426V were exclusively predicted by the Stability Oracle model, which 
leverages a structure-based deep learning approach to identify thermo-
dynamically favorable substitutions. Notably, Stability Oracle predicted 
the majority (5 out of 7) of the beneficial mutations for BMCE cappase 
variants. The improvements in enzyme activity for EvoBMCE are 

Fig. 5. Comparative activity of combinatorial capping enzyme (CE) and T7 RNAP variants on reporter gene expression. (A) Schematic representation of combi-
natorial mutations. Four capping enzyme (CE) variants (ASFVCE(WT), BMCE(WT), EvoBMCE, and ASFVCE(443)) and four T7 RNAP variants (T7 RNAP(WT), T7 
RNAP(443), EvoT7, and EvoT7(443)) were combined to generate multiple CE-T7 RNAP fusion constructs for activity assessment. EvoBMCE corresponds to the triple 
variant BMCES199A/N267W/Q426V, and EvoT7(443) comprises 12 mutations (six from T7 RNAP(443) and six from EvoT7), integrating both directed evolution and 
machine learning-derived substitutions. (B) Characterization of combinatorial variants for reporter gene expression. Reporter gene expression was quantified by 
measuring ZsGreen fluorescence normalized to OD600nm. ZsGreen/OD600nm values were assessed for each combinatorial CE-T7 RNAP construct and compared to the 
baseline ASFVCE(WT)-T7 RNAP(WT), which was set to 1. Each dot represents the average value obtained from three colonies per transformation, with bar graphs 
indicating the mean and standard deviation (SD).
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particularly impressive when we recall that predictions were done 
entirely computationally, without an experimentally determined 
structure.

It is instructive that the different algorithms and models predicted 
diverse, mostly non-overlapping variants. The fact that different 
methods all work roughly equally well in improving enzymes is prob-
ably a function of the fact that these programs were all trained on 
roughly the same data: the preponderance of information that we have 
about wild-type proteins from nature. In essence, the different machine 
learning approaches to gleaning a ‘Platonic ideal’ of a wild-type protein, 
the best protein that accords with what nature has already done, will 
provide variable but similarly useful insights into how to engineer a 
protein. There is no one best way to do machine learning for protein 
improvement. That said, our methods (especially the ability to test in a 
yeast background, where basal transcription was very low, and 
improved variants could be more easily identified than in bacteria) 
allowed us to explore much larger landscapes than previous studies that 
focused on a limited number of beneficial mutations, and the catalytic 
superiority of EvoT7 is likely due in part to this broadened exploration. 
Fortunately, and as we have previously observed [22,23,34,35], the 
improved single substitutions identified by our structure-based machine 
learning algorithms could generally be combined to generate variants 
with increasingly higher activities. We now also observe that machine 
learning can be utilized to build on the results of previous directed 
evolution experiments, as evidenced by the combination of the original 
T7 RNAP(443) with predicted substitutions.

Overall, we have used a diverse, ML-driven strategy to engineer 
highly active variants of the fusion protein between T7 RNA polymerase 
(T7 RNAP) and the Brazilian Marseillevirus capping enzyme (BMCE), 
achieving significant improvements in gene expression in yeast over 
previous directed evolution efforts. To our knowledge, this study rep-
resents the first application of machine learning to co-optimize both 
components of a transcriptional fusion enzyme, rather than treating 
each component independently. By leveraging diverse and orthogonal 
ML models—structure-based (MutCompute), evolution-based 
(MutRank), and stability-based (Stability Oracle)—we systematically 
identified beneficial substitutions under different structural constraints, 
enabling the design of functionally synergistic multi-domain constructs. 
While the current study focused on engineering a single fusion enzyme, 
future work may explore co-expression of independently optimized 
domains to further dissect the mechanistic contributions of domain 
linkage to transcriptional and translational efficiency.

Our ML-guided fusion engineering strategy expands the scope of ML- 
guided protein design to more complex, modular systems. Through 
iterative integration of ML predictions with high-throughput experi-
mental validation, we developed the 9-tuple substitution EvoBMCE 
(BMCES199A/N267W/Q426V):EvoT7 (T7 RNAPQ58S/Q404L/A584K/V609S/W698F/ 

Q786L) which has greater than 10-fold enhancement in gene expression 
efficiency compared to wild-type cappase-polymerase combinations, 
and which could be further combined with substitutions identified by 
directed evolution to yield even higher activity. In this study, we 
employed a domain-wise optimization strategy. In future work, applying 
machine learning directly to full-length fusion constructs may provide 
additional benefits, potentially enabling the discovery of cross-domain 
synergistic substitutions if suitable structural data become available. 
The improved fusion protein has the potential to be assayed and 
improved in important non-model yeast strains with unique metabolic 
traits, such as Yarrowia lipolytica, Pichia pastoris, and Kluyveromyces 
marxianus [43,44], and in mammalian cells [45], potentially leading to 
high-efficiency gene expression platforms for synthetic biology, mRNA 
therapeutics, and even cell free systems [46–48].
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