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Abstract—A biohybrid sensor is reported to integrate live 
insect antennae with microelectrode arrays. High resolution 
recording of voltage responses generated by olfactory sensory 
neurons (OSNs) were obtained in response to a panel of four 
volatile organic compounds (VOCs) at two concentrations, 20 
parts per billion (ppb) and 20 parts per million (ppm). 
Biohybrid sensor lifetime was sustained by a novel microfluidic 
platform with sensor responses acquired at 24 hours, 48 hours, 
7 days, and 14 days post resection of antenna from the host. 
VOC identity was classified by providing OSN firing rate 
histograms as input into a multilayer perceptron artificial 
neural network (MLP ANN). Biohybrid sensor response was 
found to be affected by anatomical location and VOC identity 
and thus influenced classification accuracies. Significant 
classification accuracies were achieved at the 24-hour and 14-
day timepoints. Toluene at the 14-day timepoint elicited a 
unique response resulting in 100% classification at the distal 
anatomical location. We believe this works provides a 
framework for utilizing biohybrid sensing systems for VOC 
detection and identification. 
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I. INTRODUCTION 
Currently fieldable instruments for gas analysis are 

large (>0.5 cubic feet), expensive (>$50,000), and slow. 
Hand-held devices are limited to identification of specific 
targets such as nitrogen oxide, oxygen, and carbon dioxide or 
generalized estimated concentration of total VOCs. 
Currently, there are no commercially available devices 
harnessing the rapid, selective, sensitive capabilities of 
biological olfaction systems due to the challenges in the 
bioelectronic interfacing necessary for maintaining long-term 
stability and environmental conditions necessary to sustain 
olfactory detecting elements. 

Biohybrid sensor development is limited by our 
incomplete knowledge and understanding of the mechanisms 
driving the sensitivity, selectivity, and rapid millisecond 
response observed in olfaction as well as challenges in 
developing hardware and algorithms capable of decoding 
olfactory responses. There are many organism-level studies 
demonstrating the role of olfaction during insect foraging and 
mating behaviors [1]. Bio-inspired sensor prototypes using 
odorant receptors or odorant binding proteins transduce 
electrical signal upon detection of a single target, but sensory 
elements can be unstable long-term [2-4].  

Historically, the prevalence of dogs used as 
chemical detectors demonstrates the most practical 

application of leveraging olfaction in the real-world; 
however, there are limitations in locations for use, time of 
optimal arousal and effective detection states, as well as the 
cost of training and maintenance of these animals and 
handlers [5]. Other species have been explored for use in 
chemical detection, but limitations prevent wide-spread 
application. For example, bees trained to detect explosives 
will not exhibit conditioned behaviors at night or under 
environmental conditions like fog/smoke/rain [6]. Further, 
depending on the animal used, recording from olfactory 
centers in the brain may require length surgical preparation 
(>90 minutes) with a low yield (2-3 neurons per recording)  
[7]. 

Traditional studies of insect olfaction with the moth 
Manduca sexta (M. sexta) have employed wires to record 
population level sensory neuron signaling, referred to as 
electroantennograms (or EAGs) or single sensillum 
recordings to monitor single sensory neuron activity in 
response to volatile organic compounds (VOCs) [8, 9]. 
Unfortunately, wire-based EAGs fail to provide spatial 
information regarding location of activated olfactory sensory 
neurons (OSNs), while single sensillum recordings are so 
localized that the number of OSNs that can be simultaneously 
recorded is limited [7]. Recently, triple EAG using multiple 
electrodes improves quantification of spatiotemporal neural 
activity as well as enabling an expanded range of detectable 
compounds [10]. 

The biohybrid sensor approach reported here 
integrates live M. sexta moth antennae with 32-channel 
silicon microelectrode arrays (MEA) for high resolution 
recording of voltage responses generated by OSNs when 
exposed to VOCs. With 300,000 OSNs per antenna and at 
least 63 subpopulations of OSNs sensitive and specific to 
different chemical classes and functional groups, 
combinatorial OSN activation yields the potential for unique 
neural signatures to be generated in response to hundreds of 
thousands of compounds [7,11-14]. The innovative 
capabilities of the biohybrid volatile organic compound 
sensing system (B-VOSS) reported here include: (1) Spatial 
mapping of OSN activity in response to VOC exposure, (2) a 
3-D printed microfluidic platform that maintains the antennal 
organ function after its removal from the host for up to two 
weeks, and (3) a VOC identification algorithm utilizing a 
multilayer perceptron artificial neural network (MLP ANN). 
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II. PREDICTING VOC IDENTITY FROM OLFACTORY SENSORY 
NEURON ACTIVITY 

A. Mechanism of Olfaction 
Discrete subpopulations of M. sexta antennal OSN 

subpopulations express  one of 63 types of olfactory receptors 
(OR) sensitive and selective to different chemical classes [12]. 
The number and distribution of OSNs expressing each OR 
over the antenna is unknown [12]. Theoretically, a single 
antenna could resolve hundreds of thousands of compounds 
based on combinatorial coding of OSN sensing elements (263 
ORs) [7]. The M. sexta antenna is an olfactory organ 
approximately 25 millimeters (mm) long and 1 mm in 
diameter with a keyhole shaped cross-section comprised of 
approximately 88 segments from which extend hair-like 
structures called sensilla which contain 2-3 neurons each, 
totaling almost 3500 neurons per segment [14]. OSN 
activation occurs via ligand-gated OR ion channels which 
result in ion influx through the OSN membrane and 
subsequent voltage signal transduction  through the olfactory 
nerve to the brain [15]. The approach here to record OSN 
voltage responses from the primary sensory tissue using an 
MEA provides unique fundamental knowledge of the 
distribution and differential response of OSNs based on spatial 
mapping of odor sensitivity by measuring neuron activity. 

B. Maintaining Antennal Organ Viability During VOC 
Sensing 
A 3-D printed microfluidic platform was developed to 

increase biohybrid sensor lifetime from 2 hours 
(unsupported) to 2 weeks (n = 3 antennae) (Fig. 1B, right). 
The microfluidic platform serves two key functions: (1) as a 
bioreactor to sustain antennal organ olfactory function and (2) 
as a controlled testing chamber for VOC exposure. Ports in 
the front of the platform provide access to the proximal end 
of the antenna for insertion of multichannel electrode arrays 
beneath the antenna lumen, positioning the recording sites 
alongside the antennal nerves. The MEA captures continuous 
voltage response over time from the axons of OSNs bundled 
into the olfactory nerves. The platform features an open-air 
testing channel through which the antenna is suspended (10 
mm), while the antenna's proximal and distal ends (4 mm) are 
embedded within a hydrogel matrix saturated with insect 
media to enable perfusion of nutrients and waste exchange. A 
custom olfactometer enabled automated VOC delivery to 
multiple antennae simultaneously through the 3-D printed 
platform channel using custom control software which 
actuates the opening and closing of solenoid valves and the 
flow rates of mass flow controllers in combination with a 
photoionization detector (PID) to validate VOC 
concentration. A panel of 4 individual VOCs were exposed 
to an antenna integrated with 32-channel silicon linear MEAs 
with 100-micron electrode spacing (NeuroNexus, A1x32-
Edge-10mm-100-177, 50 micron thickness) at 20 parts per 
billion (ppb) and 20 parts per million (ppm) concentrations 
for ten trials for each condition, with raw voltage response 
recordings encompassing the 200 millisecond (ms) stimulus 
and recovery period (2 minutes total). The data acquisition 

system and software were NeuroNexus Smartbox Pro and 
Radiens software suite (30 kHz sampling rate). VOC stimulus 
was generated by passing house air over the headspace of 1 
milliliter (ml) of each VOC, controlled by a mass flow 
controller using a flow rate validated for each VOC to 
generate a vapor at concentrations of 20 ppb or 20 ppm as 
measured by the in-line PID (Ametek VOC-TRAQ II). The 
VOC panel consisted of toluene, acetone, isopropyl alcohol 
(IPA), and hexane (Sigma Aldrich). Data recordings were 
collected at 24-hour, 48-hour, 7-day, and 14-day timepoints 
from antenna harvest and platform set-up.  

C. Data Reduction of Olfactory Sensory Neuron Voltage 
Responses 
Raw voltage signals (Fig. 1B, left) were acquired and 

stored prior to processing and analysis. Each 2-minute trial of 
voltage-time series data using the NeuroNexus Radiens 
Curate package was converted to Plexon file format for 
waveform detection by thresholding at ±3σ of baseline signal, 
followed by automated spike sorting in Plexon Offline Sorter 
software. Waveform detection parameters included a 1.5 
millisecond (ms) window, and the spike sorting algorithm 
used K-means PCA with 2 to 15 seeds. The data clusters 
resulting from spike sorting indicated the presence of 
multiunit activity rather than clearly defined clusters 
indicative of single unit activity (where unit refers to 

Funded Sources:  LRIR, Air Force Office of Scientific Research 
  LUCI, The Undersecretary of Defense   

 
Fig. 1. (A) An antenna from Manduca sexta is trimmed and integrated with 
a 32-channel microelectrode array for electrophysiological detection of 
olfactory sensory neuron activity. (B) The antenna and MEA are integrated 
with a microfluidic device to create a biohybrid sensing platform capable 
of sustaining neuron viability and serving as an air flow testing chamber 
for volatile organic compound (VOC) exposure. Voltage signals are 
collected from the biohybrid sensor, filtered, and sorted into neural units 
using principal component analysis. Each channel’s neural activity is 
converted into (C) firing rate histograms that signify how many times the 
neural unit depolarized per second in response to VOC exposure 
(arrowhead). Firing rate histograms from the data set serve as inputs into a 
classification ANN to learn the association between firing rate patterns and 
VOC stimuli resulting with the VOC classification as the output. 
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“neuron”). Therefore, to standardize the data across channels 
for input into an artificial neural network, the automatically 
sorted units were merged into one for each channel. An 
example of three units merged into one is shown in Fig. 1 B, 
where the solid line indicates the mean, and the grey shaded 
region indicates the standard deviation of the voltage-time 
features for the waveforms identified from the original signal. 
Firing rate histograms were generated in Plexon 
NeuroExplorer software for the first 30 seconds of each trial 
in 200 ms bins (Fig 1C, left). Custom Python scripts 
automated data processing within and between the 
NeuroNexus and Plexon software suites. Rate histograms for 
each electrode site of the 32-channel MEA were exported 
from NeuroExplorer in .csv format with each column 
representing an electrode site and each row representing the 
fire rate in hertz (Hz) in 200 ms bins from zero to 30 seconds. 

All plotting and statistical analyses were performed in 
Origin Pro 2021 (α = 0.05). Mean firing rates were calculated 
from ten trials. The baseline calculation encompassed the first 
five seconds prior to stimulus, while mean firing rates for the 
low concentration and high concentration conditions 
encompassed the five second interval after the start of the 
stimulus (which lasted for up to 500 ms depending on the 
VOC, or the time determined to reach the target concentration 
as confirmed by the PID). Mean firing rates as a function of 
time are visualized as bar charts in Fig. 2 for time points of 
24 hours, 48 hours, 7 days, and 14 days (error bars are SD). 
A two-way ANOVA was performed with Factor A being 
VOC concentration and Factor B being timepoint. Baseline 
activity had no VOC present, low concentration was 20 ppb 
VOC, and high concentration was 20 ppm VOC. Significance 
is indicated by an asterisk where p < 0.05. While there was 

no statistically relevant main effect of VOC concentration 
observed on mean firing rate, the statistically significant 
reduction of mean firing rate over time suggests a reduction 
in the number of viable OSNs over time. 

Fig. 3 depicts mean firing rates as a function of 
anatomical location, calculated from rate histograms acquired 
from three MEA channels located most proximal, middle, and 
distal along the length of the MEA spanning 3.2 millimeters 
(mm). These channels were spanning the center of the 
antenna exposed to the air channel in the testing scheme. A 
two-way ANOVA was performed with Factor A being VOC 
and Factor B being anatomical position (* = p < 0.05). The 
hypothesis at the onset of experimentation was that unique 
neural signatures would be generated by OSN populations in 
response to each VOC stimulus. Even with simplifying the 
neural activity to the mean firing rate, statistically significant 
responses occurred between different anatomical locations, 
with some VOCs eliciting a statistically meaningful 
difference in firing rate at some timepoints. For example, 
toluene at Day 7 elicited a greater firing rate response than 
other volatiles at the 20 ppm concentration. Compared to 
earlier timepoints, this response may be due to the presence 
of a sensitive OSN subpopulation being viable in excess to 
other subpopulations at this timepoint.   

D. Artificial Neural Network for VOC Classification 
The driving hypothesis of biohybrid VOC sensing is that 

unique voltage responses will be generated by each VOC 
stimulus due to the differential expression of olfactory 
receptors by OSN subpopulations with varying VOC 
sensitivity and selectivity. Firing rate histograms were chosen 
as the input metric of OSN activity for an Artificial Neural 
Network for VOC classification. Further, we hypothesized 
that firing rate histograms would be different depending on 
the VOC stimulus and the anatomical location from which the 
sensor response was collected.  

A multilayer perceptron artificial neural network (MLP 
ANN) programmed in pytorch was trained and tested at a 
20:80 split after performing hyperparameter tuning through a 
grid search (Scikit-learn). The architecture (Fig. 1 C, right) 
comprised of an input layer (n=121), hidden layer 1 (n=256), 
hidden layer 2 (n=128) and an output layer (n = 4 classifiers, 
either acetone; isopropyl alcohol, IPA; toluene; or hexane). 
Performance modifications to reduce overfitting and slow 
convergence included the use of a multi-label classification 
method in addition to a 20% dropout technique. Training and 
test loss (data not shown) as well as percent classification 
were used to assess the goodness of fit of the ANN model for 
VOC classification.  

Fig. 4 displays the percent accuracy in VOC classification 
when using rate histograms as a metric of OSN voltage 
response to VOC exposure. Proximal, middle, and distal 
labels designate the anatomical position of three 
representative electrode sites along the length of the antenna 
from which data was collected. Ten iterations of the ANN 
model were run, with the resulting classification represented 
as a point on the box plot. The bars of each boxplot visualize 
the 25%-75% quartiles, the line represents the median, the 

 
Fig. 2. Electrophysiology recordings from the most distal electrode site 
at 24-hour, 48-hour, 7-day, and 14-day time points were analyzed to 
calculate and compare the mean firing rates for 5 seconds before a VOC 
stimulus (baseline) and 5 seconds after a VOC stimulus at low 
concentration (~20 ppb) and high concentration (~20 ppm) for acetone 
(A), hexane (B), IPA, C), and toluene (D). A two-way ANOVA was 
performed for each set of VOC recordings with Factor A being VOC 
concentration (baseline, low, or high) and Factor B being timepoint. 
Significance is indicated by (*) where p < 0.05. 
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open diamond represents the mean, solid diamonds are 
outliers, and the bars representing the interquartile range 
(IQR) or range of the middle half of the data set. When the 
distribution of points is skewed (example seen for acetone at 
24 hours low and high concentrations), outliers are defined as 
being 1.5 times (1.5 IQR) above or below the third and first 
quartiles, respectively [16]. 

A 2-Way ANOVA was performed to determine the effects 
of VOC stimulus (Factor A) and anatomical location (Factor 
B) on the ANN output of classification accuracy. Statistical 
analysis revealed a significant interaction effect between the 
factors of anatomical location and VOC identity on the 
classification accuracy of B-VOSS signals acquired at the 24-
hour timepoint for 20 ppb stimuli (p = 0.02). While there was 
no main effect of VOC stimulus, classification accuracy was 
significantly affected by anatomical position (p = 0.02). For 
the 20 ppm condition, position had a main effect on 
classification accuracy (p < 0.01) with no main effect of VOC 
stimulus found. At 48 hours, the sensor response to 20 ppb 
was influenced by both VOC stimulus and position (p < 0.01), 
but the interaction between these factors was not significant. 
There were no significant main effects found at the 10 ppm 
48-hour condition; however, position indicated a trend (p = 
0.06). While the 7-day B-VOSS sensor responses did not 
result in any significant classification affected by VOC 
stimulus or position, the 14-day responses were significantly 
affected by VOC stimulus for both 20 ppb and ppm 
conditions (p < 0.01 and p = 0.02, respectively). Position had 
a significant effect on B-VOSS response (p = 0.02) for the 
14-day 20 ppm condition. Toluene elicited a unique response 
resulting in 100% classification at the distal anatomical 
location.  

III. CONCLUSIONS AND FUTURE WORK 
The work presented here demonstrates the concept that 

high-density microelectrode arrays can be utilized within M. 
sexta antenna to measure unique olfactory sensory neuron 
activity in response to stimuli capable of being decoded by an 
artificial neural network for VOC identity. High classification 
accuracies of each VOC at some anatomical positions indicate 
the proximity of olfactory sensory neurons to that MEA 
recording site that are sensitive to the VOC tested. Differences 
in VOC classification accuracies at some positions over time 
indicate a change in viability of the OSN subpopulations 
within proximity to the recording site. Optimizing the 
hydrogel and media formulations could result in 
improvements in OSN viability over time and thus a more 
reproducible and predictable sensor response in the future. 
Further, refinement of the voltage signal processing methods 
and statistical analyses of such data reductions could 
potentially elucidate the location of OSN subpopulations with 
ORs sensitivities to different VOCs. 

In summary, the B-VOSS has been demonstrated to 
support extended biosensor viability and provide OSN 
responses to VOCs for accurate classification of a panel of 4 
VOCs at two concentrations using an MLP ANN. Future work 
will explore machine learning techniques for VOC 
classification and characterize B-VOSS response to VOC 
mixtures. The work here lays the foundation to further 
optimize classification algorithms for VOC identification and 
quantification. B-VOSS is customizable for a variety of 
applications and form factors. Such biohybrid sensing 
platforms would enable operators to detect and identify VOCs 
associated with explosives and illicit drugs, their synthesis 
byproducts, chemical warfare agents, biological agents, and 
human performance (i.e. through breath biomarkers) and 
detection (e.g. in search-and-rescue and recovery efforts). 

ACKNOWLEDGMENT 
The authors acknowledge the funding from the Air Force 

Office of Scientific Research (AFOSR) as well as from the 
Office of the Undersecretary of Defense through the 
Laboratory University Collaboration Initiative (LUCI). The 
authors would like to thank Tom Daniel and Jeff Riffell for 
their discussion and feedback. The authors acknowledge the 
critical expertise, care, and husbandry of the Manduca sexta 
colony by Kim Thompson at Case Western Reserve 
University. 

  

Fig. 3. Mean firing rates reported from each of three sites located most 
proximal, middle, and most distal along the length of the MEA spanning 
3.2 mm. A two-way ANOVA was performed for each set of VOC 
recordings with Factor A being VOC identity and Factor B being 
anatomical position (proximal, middle, or distal). Significance is 
indicated by (*) where p < 0.05. 
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Fig. 4. Artificial Neural Network (ANN) percent accuracy in characterizing neural activity in response to volatile organic compound (VOC) exposure 
for low concentrations (10 parts per billion, ppb; A, C, E, G)) and high concentrations (10 parts per million, ppm; B, D, F, H) of acetone, isopropyl 
alcohol (IPA), toluene and hexane grouped by anatomical position (proximal, middle, distal) for voltage response recordings at 24 hours (A, B), 48 hours 
(C, D), 7 days (E, F), and 14 days (G, H).  
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