
Nature Biotechnology

nature biotechnology

https://doi.org/10.1038/s41587-025-02701-0Brief Communication

Identification of non-canonical peptides 
with moPepGen
 

Chenghao Zhu    1,2,3,4,8 , Lydia Y. Liu    1,2,5,6,7,8, Annie Ha5,6, 
Takafumi N. Yamaguchi1,2,3, Helen Zhu5,6,7, Rupert Hugh-White1,2,3, 
Julie Livingstone    1,2,3, Yash Patel    1,2,3, Thomas Kislinger    5,6  & 
Paul C. Boutros    1,2,3,4,5 

Proteogenomics is limited by the challenge of modeling the complexities 
of gene expression. We create moPepGen, a graph-based algorithm 
that comprehensively generates non-canonical peptides in linear time. 
moPepGen works with multiple technologies, in multiple species and on all 
types of genetic and transcriptomic data. In human cancer proteomes, it 
enumerates previously unobservable noncanonical peptides arising from 
germline and somatic genomic variants, noncoding open reading frames, 
RNA fusions and RNA circularization.

A single stretch of DNA can give rise to multiple protein products through 
genetic variation and through transcriptional, post-transcriptional and 
post-translational processes, such as RNA editing, alternative splic-
ing and RNA circularization1–4. The number of potential proteoforms 
rises combinatorically with the number of possibilities at each level, so 
despite advances in proteomics technologies5,6, much of the proteome 
is undetected in high-throughput studies7.

The most common strategies to detect peptide sequences absent 
from canonical reference databases7–9 (that is, non-canonical peptides; 
Supplementary Note 1), are de novo sequencing and open search. 
Despite continued algorithmic improvements, these strategies 
are computationally expensive, have elevated false-negative rates 
and lead to difficult data interpretation and variant identification 
issues10,11. As a result, the vast majority of proteogenomic studies use 
non-canonical peptide databases that have incorporated DNA and RNA 
alterations7. These databases are often generated using DNA and RNA 
sequencing of the same sample, and this improves error rates relative 
to community-based databases (for example, UniProt12, neXtProt13 
and the Protein Mutant Database14) by focusing the search space7,15.

This type of sample-specific proteogenomics relies on the abil-
ity to predict all potential protein products generated by the com-
plexity of gene expression. Modeling transcription, translation and 
peptide cleavage to fully enumerate the combinatorial diversity of 

non-canonical peptides is computationally demanding. To simplify the 
search-space, existing methods have focused on generating peptides 
caused by individual variants or variant types16–33, greatly increasing 
false negative rates and even potentially resulting in false-positive 
detections if the correct peptide is absent from the database (Extended 
Data Table 1). To fill this gap, we created a graph-based algorithm for the 
exhaustive elucidation of protein sequence variations and subsequent 
in silico non-canonical peptide generation. This method is moPepGen 
(multi-omics peptide generator; Fig. 1a).

moPepGen captures peptides that harbor any combination of 
small variants (for example, single-nucleotide polymorphisms (SNPs), 
small insertions and deletions (indels) and RNA editing sites) occurring 
on canonical coding transcripts, as well as on non-canonical transcript 
backbones resulting from novel open reading frames (ORFs), transcript 
fusion, alternative splicing and RNA circularization (Supplementary 
Fig. 1). It performs variant integration, in silico translation and pep-
tide cleavage in a series of three graphs for every transcript, enabling 
systematic traversal across every variant combination (Methods 
and Extended Data Fig. 1a–d). All three reading frames are explicitly 
modeled for both canonical coding transcripts and non-canonical 
transcript backbones to efficiently capture frameshift variants and 
facilitate three-frame ORF search (Extended Data Fig. 2a). Alternative 
splicing events (for example, retained introns) and transcript fusions 
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runtime complexity for the brute-force method (Fig. 1b,c). A comprehen-
sive non-canonical peptide database of human germline polymorphisms 
was generated with 15 GB memory in 3.2 h on a 16-core compute node; 
the brute-force method was unable to complete this task.

Having established the accuracy of moPepGen, we next compared 
it to two popular custom database generators, customProDBJ18 and 
pyQUILTS22. We tested all three methods on five prostate tumors 
with extensive multi-omics characterization34–36. We first evaluated 
the simple case of germline and somatic point mutations and indels. 
Most peptides (84.0 ± 0.9% (median ± median absolute deviation 
(MAD))) were predicted by all three methods, with moPepGen being 
modestly more sensitive (Extended Data Fig. 3a). Next, we considered 
the biological complexity of alternative splicing, RNA editing, RNA cir-
cularization and transcript fusion. Only moPepGen was able to evalu-
ate peptides generated by all four of these processes, and therefore 

are modeled as subgraphs with additional small variants (Extended 
Data Fig. 2b). Graphs are replicated four times to fully cover peptides 
of back-splicing junction read-through in circular RNAs (circRNAs; 
Extended Data Fig. 2c,d). moPepGen outputs non-canonical peptides 
that cannot be produced by the chosen canonical proteome data-
base. It documents all possible sources of each peptide to eliminate 
redundancy, such as where different combinations of genomic and 
transcriptomic events can produce the same non-canonical peptide.

We first validated moPepGen using 1,000,000 iterations of fuzz 
testing (Supplementary Fig. 2). For each iteration, a transcript model, 
its nucleotide sequence, and a set of variants composed of all supported 
variant types were simulated. Then non-canonical peptides generated by 
moPepGen were compared with those from a ground-truth brute-force 
algorithm. moPepGen demonstrated perfect accuracy and linear runt-
ime complexity (4.7 × 10−3 seconds per variant) compared to exponential 
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Fig. 1 | moPepGen is a graph-based algorithm that uncovers non-canonical 
peptides with variant combinations. a, moPepGen algorithm schematic. 
moPepGen is a graph-based algorithm that generates databases of non-canonical 
peptides that harbor genomic and transcriptomic variants (for example, 
single-nucleotide variant (SNV), small insertion and deletion (INDEL), RNA 
editing, alternative splicing, gene fusion and circular RNA (circRNA)) from 
coding transcripts, as well as from novel open reading frames of noncoding 
transcripts. C-term, C terminus; N-term, N terminus. b,c, moPepGen achieves 
linear runtime complexity when fuzz testing with SNVs only (b) and with SNVs 
and indels (c), based on 1,000 simulated test cases in each panel. d, A variant 
peptide from SYNPO2 that harbors a small deletion and an SNV. Fragment ion 

mass spectrum from peptide-spectrum match (PSM) of the non-canonical 
peptide harboring two variants (top, both) is compared against the canonical 
peptide theoretical spectra (left, theoretical spectra at the bottom) and against 
the variant peptide theoretical spectra (right, bottom). Fragment ion matches 
are colored, with b-ions in blue and y-ions in red. e–g, A somatic SNV D1249N 
in AHNAK was detected in DNA sequencing of a prostate tumor (CPCG0183) at 
chr11:62530672 (e), in RNA sequencing (f) and as the non-canonical peptide 
MDIDAPDVEVQGPNWHLK (g). RNA-Seq, RNA sequencing; WGS, whole-genome 
sequencing. h,i, Fragment ion mass spectrum from PSM of the canonical peptide 
MDIDAPDVEVQGPDWHLK (h) and the non-canonical peptide (i). m/z, mass-to-
charge ratio.
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80.2 ± 2.1% (median ± MAD) of peptides were uniquely predicted by 
moPepGen (Extended Data Fig. 3b). By contrast only 3.2% of peptides 
were not predicted by moPepGen, and these corresponded to specific 
assumptions around the biology of transcription and translation made 
by other methods (Extended Data Fig. 3c and Methods). By generat-
ing a more comprehensive database, moPepGen enabled the unique 
detection of 53.7 ± 12.2% (median ± MAD) peptides from matched 
proteomic data (Extended Data Fig. 3d). An example of a complex 
variant peptide identified only by moPepGen is the combination of 
a germline in-frame deletion followed by a substitution in SYNPO2 
(Fig. 1d). In addition, moPepGen’s clear variant annotation system 
readily enables peptide verification across the central dogma. For 
example, the somatic mutation D1249N in AHNAK was detected in ~30% 
of both DNA and RNA reads and was detected by mass spectrometry 
(MS; Fig. 1e–i), confirmed by three search engines. Taken together, 
these benchmarking results demonstrate the robust and comprehen-
sive nature of moPepGen.

To illustrate the use of moPepGen for proteogenomic studies, we 
first evaluated it across multiple proteases (Extended Data Fig. 4a). 
Using independent conservative control of false discovery rate (FDR) 
across canonical and custom databases (Methods and Supplementary 
Fig. 3)7,18, we focused on detection of novel ORFs (that is, polypeptides 
from transcripts canonically annotated as noncoding) across seven 
proteases37 in a deeply fractionated human tonsil sample38 (Supple-
mentary Table 1). moPepGen enabled the detection of peptides from 
1,787 distinct ORFs previously thought to be noncoding, and these 
peptides were most easily detected with the Arg-C protease (Extended 
Data Fig. 4b), suggesting alternative proteases may enhance noncoding 
ORF detection (Extended Data Fig. 4c). In total, 184 noncoding ORFs 
were detected across four or more proteomic preparation methods in 
this single sample, demonstrating that moPepGen can reliably identify 
novel proteins (Extended Data Fig. 4d,e).

We next sought to demonstrate that moPepGen can benefit analy-
ses in different species by studying germline variation in the C57BL/6 N 
mouse37,39. Using strain-specific germline SNPs and indels from the 
Mouse Genome Project37,39, moPepGen predicted 5,481 non-canonical 
peptides arising from variants in protein-coding genes and 15,475 pep-
tides from noncoding transcript novel ORFs (Extended Data Fig. 5a). 
Across the proteomes of three bulk tissues (cerebellum, liver and 
uterus), we detected 18 non-canonical peptides in protein-coding 
genes and 343 from noncoding ORFs (Extended Data Fig. 5b–d and 
Supplementary Table 2). Thus, moPepGen can support proteogenom-
ics in non-human studies to identify variants of protein-coding genes 
and novel proteins.

To evaluate the use of moPepGen for somatic variation, we analyzed 
375 human cancer cell line proteomes with matched somatic mutations 
and transcript fusions40,41 (Supplementary Data). moPepGen pro-
cessed each cell line in 2:58 min (median ± 1:20 min, MAD), generating 
2,683 ± 2,513 (median ± MAD) potential non-canonical variant peptides 
per cell line. The number of predicted variant peptides varied strongly 
with tissue of origin, ranging from median of 838 to 16,255 (Fig. 2a), 
and was driven largely by somatic mutations in protein-coding genes 
and by fusion events in noncoding genes (Extended Data Fig. 6a–c).  
Searching the cell line proteomes identified 39 ± 27 (median ± MAD) 
non-canonical peptides per cell line (Methods and Supplementary 
Fig. 4). The majority of these were derived from noncoding transcript 
ORFs (Extended Data Fig. 6d and Supplementary Table 3). Variant pep-
tides from coding somatic mutations were more easily detected than 
those from transcript fusion events (Extended Data Fig. 6e,f). A total of 
26 genes had variant peptides detected in cell lines from three or more 
tissues of origin, including the cancer driver genes TP53, KRAS and HRAS 
(Fig. 2b). Peptide evidence was also found for fusion transcripts involv-
ing cancer driver genes like MET and STK11 (Extended Data Fig. 6g,h). 
We validated non-canonical peptide-spectrum matches (PSMs) by 
predicting tandem mass (MS2) spectra using Prosit42 and verifying 

that variant peptide MS2 spectra correlated better with predictions 
based on the matched non-canonical peptide sequences than predic-
tions based on their canonical peptide counterparts (Methods and 
Extended Data Fig. 6i). Coding variant peptide PSMs also showed high 
cross-correlations with their Prosit-predicted variant MS2 spectra, on 
par with those of canonical PSMs and their canonical spectra (Extended 
Data Fig. 6j). Thus, moPepGen can effectively and rapidly detect variant 
peptides arising from somatic variation. These variant peptides may 
also prove to harbor functional consequences in future studies. Genes, 
such as KRAS, trended toward greater essentiality for cell growth in 
multiple cell lines with non-canonical peptide hits, and the effects may 
be independent of gene dosage (Extended Data Fig. 7a–c). Across cell 
lines, detected variant peptides were also predicted to give rise to 416 
putative neoantigens (3.0 ± 1.5, median ± MAD per cell line; Extended 
Data Fig. 7d and Supplementary Table 4), including recurrent neoan-
tigens in KRAS, TP53 and FUBP3 (Extended Data Fig. 7e).

We next sought to demonstrate the use of moPepGen in data- 
independent acquisition (DIA) MS using eight clear cell renal cell 
carcinoma tumors with matched whole-exome sequencing, RNA 
sequencing and DIA proteomics43. In each tumor, moPepGen pre-
dicted 157,016 ± 34,215 (median ± MAD) unique variant peptides from 
protein-coding genes (Extended Data Fig. 8a). Using a Prosit-generated 
spectral library, we detected 307 ± 112 (median ± MAD) variant pep-
tides in each tumor using DIA-NN44 (Extended Data Fig. 8b and Sup-
plementary Table 5). Germline-SNP and alternative splicing were the 
most common sources of detected variant peptides (Extended Data 
Fig. 8c,d). Non-canonical peptides derived from RNA editing events 
were detected in 21 genes (Extended Data Fig. 8e–i). Thus, moPepGen 
can enable the detection of variant peptides from DIA proteomics.

Finally, to demonstrate the use of moPepGen on complex and 
comprehensive gene expression data, we analyzed five primary pros-
tate cancer samples with matched DNA whole-genome sequencing, 
ultra-deep ribosomal-RNA-depleted RNA sequencing and MS-based 
proteomics34–36. moPepGen generated 1,382,666 ± 64,281 (median ± 
MAD) unique variant peptides per sample, spanning 115 variant com-
bination categories (Fig. 2c). Searching this database resulted in the 
detection of 206 ± 56 (median ± MAD) non-canonical peptides per 
sample, with 138 ± 28 (median ± MAD) derived from protein-coding 
genes (Extended Data Fig. 9a and Supplementary Table 6). The distri-
bution of intensities and Comet expectation scores of non-canonical 
PSMs closely resembled that of canonical PSMs and was distinct 
from all decoy hits (Supplementary Fig. 5), lending confidence in 
our non-canonical peptide detection. All samples harbored proteins 
containing multiple variant peptides (9 ± 1.5, median ± MAD proteins 
per tumor; range 2–6 variant peptides per protein; Fig. 2d). Some 
detected peptides harbored multiple variants, including two from 
prostate-specific antigen (PSA from the KLK3 gene; Extended Data 
Fig. 9b). Germline SNPs were the major common cause of variant 
peptides on coding transcripts and alternative splicing events were 
the most common cause on noncoding transcripts (Extended Data 
Fig. 9c–e). Nine genes showed recurrent detection of peptides caused 
by circRNA back-splicing (Extended Data Fig. 9f–g), with 36/78 circRNA 
PSMs validated by de novo sequencing (Supplementary Table 7)45. 
These recurrent circRNA-derived peptides were verified in five addi-
tional prostate tumors (Supplementary Fig. 6). We also detected 
four peptides from noncoding transcripts with the recently reported 
tryptophan-to-phenylalanine substitutants46. Thus, moPepGen can 
identify peptides resulting from highly complex layers of gene expres-
sion regulation.

moPepGen is a computationally efficient algorithm that enu-
merates transcriptome and proteome diversity across arbitrary vari-
ant types. It enables the detection of variant and novel ORF peptides 
across species, proteases and technologies. moPepGen integrates 
into existing proteomic analysis workflows, and can broadly enhance 
proteogenomic analyses for many applications.
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Fig. 2 | moPepGen generates comprehensive non-canonical databases 
that support proteogenomic analysis. a, Sizes of variant peptide databases 
generated by moPepGen using somatic SNVs, small insertions and deletions 
and transcript fusions for 376 cell lines from the Cancer Cell Line Encyclopedia 
project. Color indicates cell line tissue of origin. The number of cell lines per 
tissue of origin is provided in Supplementary Table 8. b, Genes with variant 
peptides detected in cell lines across three or more tissues of origin (bottom 
covariate). The barplot shows number of recurrences across tissues and color 
of heatmap indicates number of cell lines. c, Number of non-canonical peptides 
from different variant combinations (bottom heatmap) generated using genomic 

and transcriptomic data from five primary prostate tumors (n = 5), shown across 
four tiers of custom databases and grouped by the number of variant sources in 
combination. Alternative translation (Alt Translation) sources with ≥10 peptides 
are visualized. gSNP, germline SNP; gIndel, germline small insertion and deletion 
(indel); sSNV, somatic single-nucleotide variant; sIndel, somatic indel; W > F: 
tryptophan-to-phenylalanine. d, Five variant peptides detected in one prostate 
tumor (CPCG0183) from the protein plectin (PLEC). Fragment ion matches 
are colored, with b-ions in blue and y-ions in red. m/z, mass-to-charge ratio. All 
boxplots show the first quartile, median, to the third quartile, with whiskers 
extending to furthest points within 1.5× the interquartile range.
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Methods
Transcript Variant Graph
A transcript variant graph (TVG) is instantiated for each transcript, 
incorporating all associated variants. In a TVG, nodes are transcript 
fragments with reference or alternative nucleotide sequences, whereas 
edges are the opening or closing of variant nodes connecting them to 
the reference sequence, or the elongation of reference sequences. The 
TVG starts with three linear nodes of the entire transcript sequence rep-
resenting the three reading frames, offset by 0, 1 or 2 nucleotides from 
the transcript 5′ end. A variant is incorporated into the graph by break-
ing the node at the variant’s start and end positions and attaching a new 
node with the alternative sequence to the new upstream and down-
stream nodes. An in-frame variant is represented as a node with incom-
ing and outgoing nodes in the same reading frame subgraph, whereas 
frameshifting variants have incoming nodes and outgoing nodes in 
different reading frames. The outgoing reading frame index equals to 
(Sref−Salt) mod 3, where Sref is the length of the reference sequence and 
Salt is the length of the alternative sequence. For transcripts with an 
annotated known canonical ORF, variants are only incorporated into 
the subgraph of the appropriate reading frame (Extended Data Fig. 2a). 
If frameshifting variants are present, downstream variants are also 
incorporated into the subgraphs of the outgoing frameshift nodes. For 
transcripts without an annotated ORF, all variants are incorporated into 
all three reading frames (Extended Data Fig. 2a). Large insertions and 
substitutions as the result of alternative splicing events (for example, 
retained introns, alternative 3′/5′ splicing, etc.) are represented as 
subgraphs that can carry additional variants (Extended Data Fig. 2b).

Variant bubbles and peptide variant graph
After the TVG has been populated with all variants, nodes that overlap 
with each other in transcriptional coordinates are aligned to create 
variant bubbles within which all nodes point to the same upstream 
and downstream nodes (Extended Data Fig. 1b). This is done by first 
finding connection nodes in the TVG, the reference nodes without any 
variants that connect two variant bubbles after they are aligned. The 
root node is the first connection node, and the next connection node is 
found by looking for the first commonly connected downstream node 
with length of five or more nucleotides that is outbound to more than 
one node (Supplementary Note 2 and Supplementary Fig. 7). Nodes 
between the two connection nodes are then aligned to form a variant 
bubble by generating all combinations of merged nodes so that they 
all point to the same upstream and downstream nodes (Extended Data 
Fig. 1b). Overlapping variants in the variant bubble are automatically 
eliminated because they are disjoint. The sequence lengths of nodes 
in the variant bubble are also adjusted by taking nucleotides from the 
commonly connected upstream and downstream nodes to ensure 
that they are multiples of three. A peptide variant graph (PVG) is then 
instantiated by translating the nucleotide sequence of each TVG node 
into amino acid sequences.

Peptide cleavage graph
A PVG is converted into a peptide cleavage graph (PCG), where each 
edge represents an enzymatic cleavage site (Extended Data Fig. 1c). 
For connection nodes, all enzymatic cleavage sites are first identified, 
and the node is cleaved at each cleavage site. Because enzymatic cleav-
age site motifs can span over multiple nodes (for example, the trypsin 
exception of not cutting given K/P but cutting given WK/P), connection 
nodes are also merged with each downstream and/or upstream node 
and cut at additional cleavage sites if found. To optimize run time, 
different merge-and-cleave operations are used depending on the 
number of incoming and outgoing nodes, and the number of cleavage 
sites in a node (Supplementary Fig. 8). Hypermutated regions where 
variant bubbles contain many variants and/or the lack of cleavage sites 
in connection nodes can result in an exponential increase in the num-
ber of nodes in the aligned variant bubble. We use a pop-and-collapse 

strategy, such that when merge-and-cleave is applied to a connection 
node, x number of amino acids are popped from the end of each node 
in the variant bubble. The popped nodes are collapsed if they share the 
same sequence. The pop-and-collapse operation is only applied when 
the number of nodes in a variant bubble exceeds a user-defined cutoff.

Calling variant peptides
Variant peptides with the permitted number of miscleavages are called 
by traversing through the PCG. We use a stage-and-call approach that 
first visits all incoming nodes to determine the valid ORFs of a peptide 
node (Supplementary Note 3). Stage-and-call also allows cleavage-gain 
mutations and upstream frameshift mutations to be carried over to 
the downstream peptide nodes. Peptide nodes are then extended by 
merging with downstream nodes to call variant peptides with miscleav-
ages (Supplementary Note 4). For noncoding transcripts, novel ORF 
start sites, including those caused by start-gain mutations, are found 
by looking for any methionine (M) in all three subgraphs. Terminology 
used in subsequent sections, including canonical and non-canonical 
database, variant peptides, non-canonical peptides and proteoform, 
is defined in Supplementary Note 1.

Fusion and circular transcripts
Most fusion transcript callers detect fusion events between genes, 
causing ambiguity of which transcripts of the genes are involved in a 
particular fusion event. We took the most comprehensive approach and 
endeavored to capture all possible variant peptides by assuming that 
a fusion event could happen between any transcript of the donor and 
accepter genes. Fusion transcripts are considered as novel backbones 
in graph instantiation, with an individual graph instantiated for each 
donor and acceptor transcript pair. Single-nucleotide variants (SNVs) 
and small insertion/deletions (indels) of both donor and acceptor 
transcripts are incorporated into the TVG. The translated and cleaved 
PCG is then traversed to call variant peptides, identical to a canonical 
transcript backbone. If the fusion breakpoint occurs in an intron, the 
intronic nucleotide sequence leading up to or following the break-
point is retained as unspliced, and its associated intronic variants are 
included. The ORF start site of the donor transcript is used if exists when 
calling variant peptides. The fusion transcript is treated as a noncoding 
transcript if the donor transcript is annotated as noncoding.

Similar to fusion transcripts, circRNAs are treated as novel 
backbones, with an individual graph instantiated for each circRNA 
(Extended Data Fig. 2c). A circular variant graph (a counterpart to TVG) 
is instantiated by connecting the linear sequence of the circRNA onto 
itself at the back-splice junction and incorporating SNVs and indels. 
Novel peptides can theoretically be translated from circRNAs if a start 
codon is present, by ribosome read-through across the back-splicing 
junction site. If the circRNA length is not a multiple of three nucleotides, 
translation across the back-splicing site induces a frameshift. Without 
a stop codon, the ribosome may traverse the circRNA up to three times 
before the amino acid sequence repeats. Therefore, moPepGen extends 
the circular graph linearly by appending three copies of each reading 
frame as a subgraph to account for frameshifts. The extended graph is 
then translated to a PVG and converted to a PCG. Variant peptides are 
called by treating every circRNA as a noncoding transcript and scanning 
all novel start codons in all three reading frames.

Biological assumptions for edge cases
moPepGen applies various assumptions to selectively include or 
exclude certain variant events or peptides (Extended Data Fig. 3c). 
Start-codon-altering variants are excluded due to the uncertainty 
around whether and where translation will still occur. Similarly, 
splice-site-altering variants are omitted due to the complexity of splic-
ing determinants, which can result in skipping to the next canonical or 
non-canonical splice site. We terminate translation at the last complete 
peptide when stop codons are unknown, as incomplete transcript 
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annotations create ambiguity in downstream sequences, obscuring 
enzymatic cleavage sites. Stop-codon-altering variants do not extend 
translation beyond the transcript, as the downstream genomic region 
is not assumed to be part of the RNA transcript.

GVF file format and parsers
Genomic (SNPs, SNVs, indels) and transcriptomic variants (fusion tran-
scripts, RNA editing sites, alternative splicing transcripts, circRNAs) are 
first converted into gene-centric entries for each transcript that they 
impact. We defined a gene-based GVF (genetic variant format) derived 
from VCF (variant calling format) to store all relevant information for 
each variant, including the gene ID and offset. moPepGen includes 
built-in parsers to convert variant caller outputs into GVFs. SNPs, SNVs 
and indels require the annotation via Variant Effect Predictor (VEP)47 for 
compatibility with the parseVEP module. Parsers for fusion, alternative 
splicing, RNA editing and circRNA operate directly on native outputs. 
moPepGen is implemented in Python and supports easy extension and 
addition of new parsers. The full Nextflow pipeline (https://github.com/
uclahs-cds/pipeline-call-NonCanonicalPeptide)48,49,50, automates data 
preprocessing, peptide prediction and database tiering, with optional 
transcript abundance filtering. Our DNA data processing pipeline is 
described elsewhere51.

Fuzz testing and brute force algorithm
To validate moPepGen, we implemented a fuzz testing framework 
where transcripts with varying properties (for example, coding status, 
strand, selenocysteine and start or stop codon position) and artificial 
sequences are simulated. Each is paired with simulated variants across 
all supported types. The resulting peptides are compared against 
those generated by a brute force algorithm, which iterates through 
all possible variant combinations to identify non-canonical peptides. 
The brute force algorithm also performs three-frame translation for 
noncoding transcripts. Fuzz testing and the brute force algorithm are 
included in the moPepGen package.

Datasets
Cancer Cell Line Encyclopedia proteome. Proteomic charac-
terization of 375 cell lines from the Cancer Cell Line Encyclopedia 
(CCLE) was obtained from Nusinow et al.41. Fractionated raw mass 
spectrometry (MS) data were downloaded from MassIVE (project 
ID: MSV000085836). Somatic SNVs and indels, and fusion transcript 
calls were downloaded from the DepMap portal (https://depmap.org/
portal, 22Q1). Somatic SNVs and indels were converted to GRCh38 
coordinates from hg19 using CrossMap (v0.5.2)52. Gene and transcript 
IDs were assigned to each SNV/indel using VEP (v104)53 with genomic 
annotation GTF downloaded from GENCODE (v34)54. Fusion results 
were aligned to the GENCODE v34 reference by first lifting over the 
fusion coordinates to GRCh38 using CrossMap (v0.5.2). After lifto-
ver, the records were removed if the donor or acceptor breakpoint 
location was no longer associated with the gene, if either breakpoint 
dinucleotides did not match with the reference or if either gene ID was 
not present in GENCODE (v34).

Mouse proteome. MS-based proteome of mouse strain C57BL/6 N was 
obtained from Giansanti et al.37. Fractionated raw MS data of the liver, 
uterus and cerebellum proteomes were downloaded from the PRIDE 
repository (project ID: PXD030983). Germline SNPs and indels were 
obtained from the Mouse Genomes Project39 with GRCm38 VCFs down-
loaded from the European Variation Archive (accession: PRJEB43298). 
Germline SNPs and indels were annotated using VEP (v102) against 
Ensembl GRCm38 (v102)47.

Alternative protease and fragmentation proteome. A human 
tonsil tissue processed using ten different combinations of pro-
teases and peptide fragmentation methods (ArgC_HCD, AspN_HCD, 

Chymotrypsin_CID, Chymotrypsin_HCD, GluC_HCD, LysC_HCD, LysN_
HCD, Trypsin_CID, Trypsin_ETD, Trypsin_HCD) was obtained from Wang 
et al.38. Fractionated raw mass spectrometry data were downloaded 
from the PRIDE repository (project ID: PXD010154).

DIA proteome. DIA proteomic data from eight clear cell renal cell car-
cinoma (ccRCC) samples were obtained from Li et al.43. Raw mass spec-
trometry data were retrieved from the Proteomic Data Commons (PDC, 
PDC000411). WXS and RNA-seq BAM files were obtained from Genomic 
Data Commons (GDC, Project: CPTAC-3, Primary Site: Kidney). WXS 
data was processed using a standardized pipeline to identify germline 
SNPs, somatic SNVs and indels51. BAM files were reverted to FASTQ using 
Picard toolkit (v2.27.4) and SAMtools (v1.15.1)55, realigned to GRCh38 
using BWA-MEM2 (v2.2.1)56, and calibrated using BQSR and IndelRea-
lignment from GATK (v4.2.4.1)57. Germline SNPs and indels were called 
following GATK (v4.2.4.1) best practices57,58, whereas somatic SNVs and 
indels were called using Mutect2 (from GATK v4.5.0.0), followed by 
annotation with VEP (v104)53 against GENCODE v34. RNA-seq BAM files 
were converted to FASTQ using Picard toolkit (v2.27.4) and SAMtools 
(v1.15.1) and re-aligned to GRCh38.p13 with GENCODE v34 GTF using 
STAR (2.7.10b)59. Transcript fusion events were called using STAR-Fusion 
(v1.9.1)60, alternative splicing events were called using rMATS (v4.1.1)61 
and RNA editing sites were called using REDItools2 (v1.0.0)62 using 
paired RNA and DNA BAMs.

Prostate cancer proteome. The proteomic characterization of 
five prostate cancer tissues were obtained from Sinha et al.36. Raw 
mass spectrometry data were downloaded from MassIVE (project 
ID: MSV000081552). Germline SNPs and indels, as well as somatic 
SNVs and indels, were obtained from the ICGC Data Portal (Project 
code: PRAD-CA). Variants were indexed using VCFtools (v0.1.16)63 
and converted to GRCh38 using Picard toolkit (v2.19.0), followed by 
chromosome name mapping from the Ensembl to the GENCODE sys-
tem using BCFtools (v1.9-1)55. Mutations were annotated using VEP 
(v104)53 against GENCODE (v34). Raw mRNA sequencing data were 
obtained from Gene Expression Omnibus (accession: GSE84043). 
Transcriptome alignment was performed using STAR (v2.7.2) to refer-
ence genome GRCh38.p13 with GENCODE (v34) GTF and junctions 
were identified by setting the parameter–chimSegmentMin 10 (ref. 59). 
CIRCexplorer2 (v.2.3.8) was used to parse and annotate junctions for 
circRNA detection64. Fusion transcripts were called using STAR-Fusion 
(v1.9.1)60. RNA editing sites were called using REDItools2 using paired 
RNA and DNA BAMs (v1.0.0)62. Alternative splicing transcripts were 
called using rMATS (v4.1.1)61.

Canonical database search
All MS raw files (.raw) were converted to mzML using ProteoWizard 
(3.0.21258)65. The GRCh38 human and the GRCm38 mouse canonical 
proteome databases were obtained from GENCODE (v34) and Ensembl 
(v102), respectively, with common contaminants66 added and reversed 
sequences appended for target-decoy FDR control. Database searches 
were performed using Comet (v2019.01r5)67 with static modifications 
of cysteine carbamidomethylation, and up to three variable modi-
fications (methionine oxidation, protein N-terminus acetylation, 
peptide N-terminus pyroglutamate formation), under full trypsin 
digestion with up to two miscleavages (except for the tonsil samples 
processed with alternative enzymes), for peptide lengths 7–35. For 
CCLE, static modification of tandem mass tag (TMT; 10plex) on the pep-
tide N-terminus and lysine residues and variable modification of TMT 
on serine residues were additionally included, following the original 
study. CCLE data were searched in low resolution with 20 ppm precur-
sor mass tolerance, 0.5025 Da fragment mass tolerance, and clear TMT 
m/z range, following the original publication. All other datasets used 
high-resolution label-free quantification, with precursor mass toler-
ance of 20 ppm (mouse), 10 ppm (tonsil) and 30 ppm (prostate), and 
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fragment mass tolerance of 0.025 Da for tonsil or 0.01 Da otherwise, 
following original publications. Tonsil proteomes were searched with 
the appropriate fragmentation method setting and with the protease 
used in sample preparation, with a maximum of two miscleavages for 
Lys-C and Arg-C, three miscleavages for Glu-C and Asp-N and four mis-
cleavages for chymotrypsin, as in the original publication38. The eight 
DIA ccRCC proteomes were not searched against a canonical database.

Peptide-level target-decoy FDR calculation was performed using 
the FalseDiscoveryRate module from OpenMS (v3.0.0-1f903c0)68 using 
the formula (D + 1)/(T + D), where D and T are the numbers of decoy 
and target PSMs, respectively. Peptides were filtered at 1% FDR, and 
PSMs were removed from the corresponding mzML for subsequent 
non-canonical database search. Post hoc cohort-level FDR was calcu-
lated to verify an FDR cutoff smaller than 1%. Peptide quantification 
was performed using OpenMS FeatureFinderIdentification (v3.0.0-
1f903c0)69 with ‘internal IDs only’ and adjusted precursor mass toler-
ances as above, and otherwise default parameters. TMT quantification 
was performed using OpenMS IsobaricAnalyzer (v3.0.0-1f903c0), 
without isotope correction due to absence of correction matrix.

Non-canonical database generation
Human (GRCh38) and mouse (GRCm38) reference proteomes were 
obtained from GENCODE (v34) and Ensembl (v102), respectively. 
Non-canonical peptide databases were generated with trypsin diges-
tion of up to two miscleavages and peptide lengths 7-25, except for 
alternative protease samples. Alternative translation peptides were 
generated using callAltTranslation, including those with selenocyst-
eine termination70 or W > F substitutants46. Peptides from noncod-
ing ORFs were generated using callNovelORF with ORF order as min 
and with or without alternative translation. Noncoding ORF peptide 
databases were also generated for each alternative protease used in 
processing of the tonsil proteome, with appropriate number of maxi-
mum miscleavages as outlined above.

Non-canonical peptide databases were generated for 376 CCLE 
cell lines, 375 of which have non-reference channel proteomics char-
acterization. This included all 10 cell lines in the bridge line and 366 
non-reference cell lines with mutation data. Of the 378 non-reference 
channels across 42 plexes, three cell lines were duplicated, seven were 
in the bridge line, two didn’t have mutation or fusion information and 
additional eight didn’t have fusion information. Variant databases from 
all cell lines in a TMT plex, including the ten cell lines in the reference 
channel, were merged along with noncoding ORF peptides to generate 
plex-level databases. Plex-level databases were split into three tiers: 
‘Coding’ (SNVs, indels and fusion in coding transcripts), ‘Noncoding’ 
(novel ORFs) and ‘Noncoding Variant’ (SNVs, indels and fusion in non-
coding transcripts).

Non-canonical peptide databases for the proteome of mouse 
strain C57BL/6 N were generated by calling variant peptides based on 
germline SNPs and indels, followed by merging with the noncoding 
ORF peptides. The resulting non-canonical peptides were then split 
into ‘Germline’ (variants in coding transcripts), ‘Noncoding’ (novel 
ORFs) and ‘Noncoding-Germline’ (variants in noncoding transcripts).

For the eight ccRCC tumors, sample-specific variant peptides were 
called from germline/somatic SNVs and indels, RNA editing, transcript 
fusion and alternative splicing. Resulting peptides were merged with 
noncoding ORF and alternative translation peptides and split into 
four tiers: ‘Variant’ (variants in coding transcripts), ‘Noncoding’ (novel 
ORFs), ‘Noncoding Variant’ (variants in noncoding transcripts) and ‘Alt 
Translation’ (selenocysteine termination and W > F substitutants46).

For the five prostate tumors, variant peptides were called from all 
available genomic and transcriptomic variants, including germline/
somatic SNVs and indels, RNA editing sites, transcript fusions, alter-
native splicing and circRNA. These peptides were then merged with 
the noncoding ORF and alternative translation peptides and split 
into five tiers: ‘Variant’ (variants in coding transcripts), ‘Noncoding’ 

(novel ORFs), ‘Noncoding Variant’ (variants in noncoding transcripts), 
‘Circular RNA’ (circRNA ORFs) and ‘Alt Translation’ (selenocysteine 
termination and W > F substitutants46).

Non-canonical database search
Non-canonical database searches were performed similarly to canon-
ical proteome searches for each dataset, as described in detail above. 
Custom databases of peptide sequences were concatenated with the 
reverse sequence for FDR control. Non-canonical peptide searches 
with Comet (v2019.01r5) were set to ‘no cleavage’ and did not per-
mit protein N-terminus modifications or clipping of N-terminus 
methionine. Peptide-level FDR was set to 1% independently for each 
tier of non-canonical database, and PSMs of peptides that passed 
FDR were removed from the mzML for subsequent searches. Post 
hoc cohort-level FDR was calculated to verify an FDR cutoff smaller 
than 10% in tiers with at least 100 PSMs, as cohort-level FDR is not 
meaningful for smaller tiers. Each database tier thus had independ-
ent FDR control using database-specific decoy peptides, and a spec-
trum is excluded from subsequent searches after finding its most 
probable match. This strategy minimizes false-positives caused by 
joint FDR calculation with canonical peptides and enables a con-
servative detection of non-canonical peptides7,18. For CCLE, peptides 
were only considered for detection and quantitation for a cell line if 
they existed in the sample-specific database. For prostate tumors, 
additional searches were conducted with the same non-canonical 
databases using MSFragger (v3.3)71 and X!Tandem (v2015.12.15)72 with 
equivalent parameters for verification. For all datasets, quantified 
peptides were distinguished by charge and variable modifications, 
and detected but not quantified peptides were excluded from sub-
sequent analysis.

DIA non-canonical spectral library search
Raw files were converted to.mzML files using ProteoWizard (3.0.21258)65. 
Sample-specific variant peptide FASTA databases were generated using 
the aforementioned non-canonical database generation pipeline, with 
individual spectral libraries.msp files generated by Prosit42. Prosit was 
configured with instrument type of LUMOS, collision energy of 34, 
and fragmentation method of HCD, with all default parameters oth-
erwise. Searches were conducted using DIA-NN (v1.8.1)44 against the 
sample-specific predicted variant peptide spectral libraries with pro-
tein inference disabled, a q-value cutoff of 0.01, and ‘high precision’ 
quantification.

Neoantigen prediction
Neoantigens were predicted from non-canonical peptides detected in 
CCLE proteomes. Cell line-specific HLA genotype was inferred using 
OptiType (v1.3.5)73 from WGS or WXS data. Detected non-canonical 
peptides from the ‘Coding’ tier were converted to FASTA and ana-
lyzed using MHCflurry (v2.0.6)74 with default parameters and cell 
line-specific HLA genotypes.

Statistical analysis and data visualization
All statistical analysis and data visualization were performed in the 
R statistical environment (v4.0.3), with visualization using Boutro-
sLab.plotting.general (v6.0.2)75. All boxplots, except for Extended 
Data Fig. 7a, show all data points, the median (center line), upper and 
lower quartiles (box limits), and whiskers extend to the minimum and 
maximum values within 1.5 times the interquartile range. In Extended 
Data Fig. 7a, data are summarized as boxplots to improve visual clar-
ity without individual points due to the large number of gene and cell 
line combinations. All comparisons were performed on biological 
replicates, defined as independent patients, tumors, or cell lines as 
appropriate to each analysis. Schematics were created in Inkscape 
(v1.0) and Adobe Illustrator (27.8.1), and figures were assembled using 
Inkscape (v1.0).
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Gene dependency association analysis. Gene dependency data 
from CCLE CRISPR screens were downloaded from the DepMap data 
portal (https://depmap.org/portal, 24Q2). Twelve cell lines with 
non-canonical peptide detections in proteomic data from at least ten 
genes were selected. The CERES scores76 of genes with non-canonical 
peptide hits were compared to those without, using the Mann-Whitney 
U-test. Additionally, pooled CERES scores across all genes and cell lines 
were compared between the two groups using the same test. For KRAS, 
CERES scores and RNA abundance were compared between cell lines 
with non-canonical peptide detections in proteomic data and those 
with only canonical peptides, using the Mann-Whitney U-test.

Spectrum visualization and validation. Target PSM experimental 
spectra were extracted from mzML files using pyOpenMS (v3.1.0)77 
and visualized in R. Theoretical spectra were generated from the 
target peptide sequences using the TheoreticalSpectrumGenerator 
module of OpenMS and compared to the experimental spectra using 
hyperscores via the HyperScore module with consistent parameters 
as described above (for example, fragment mass tolerance). Fragment 
ion matching between the experimental and theoretical spectra was 
performed using a similar approach to IPSA78. Theoretical spectra 
with predicted fragment peak intensities were generated using Prosit 
via Oktoberfest (v0.6.2)79 with parameters (for example, fragmen-
tation method and energy) matching the original publication41 and 
compared using cross-correlation80 with settings matching Comet 
searches (for example, fragment_bin_offset). To assess the distribu-
tion of cross-correlation values for variant peptide PSMs, we randomly 
selected 1,000 canonical PSMs from each of the 42 TMT-plexes as con-
trol. circRNA peptide PSMs were validated using the Novor algorithm 
through app.novor.cloud, using parameters (for example, fragmenta-
tion method, MS2 analyzer, enzyme, precursor and fragment mass 
tolerance) consistent with database searches45.

Cohort-level FDR. A post hoc approach was used to estimate the FDR 
threshold at the cohort level for each database tier. Within each sample 
and database tier, we first identified the target hit with the highest FDR 
value under the 1% threshold, denoted as FDRi:

FDRi = max
j∈{1,2,…,n}

(FDRj|FDRj < 0.01)

The number of decoy and target hits with FDR values less than FDRi 
for each sample was tallied. The equivalent cohort-level FDR threshold 
was then calculated by dividing the total number of decoy hits by the 
total number of target and decoy hits across the cohort:

Cohort − level FDR cutoff =
∑ 1 (Decoy Hits FDRj ≤ FDRi)

∑ 1 (Target & Decoy Hits FDRj ≤ FDRi)

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Data supporting the conclusions of this paper are included within it and 
its Supplementary Information. The processed CCLE data are available 
at the DepMap portal (http://www.depmap.org). The raw WGS and WXS 
cell lines sequencing data are available at Sequence Read Archive (SRA) 
and European Genome-Phenome Archive (EGA) under access numbers 
PRJNA523380 (ref. 40) and EGAD00001001039 (ref. 81). The raw mass 
spectrometry proteomic data are publicly available without restrictions 
at the ProteomeXchange via the PRIDE partner repository under acces-
sion numbers PXD030304 (ref. 41) for cell lines, PXD030983 (ref. 37) for 
mouse strain C57BL/6 N and PXD010154 (ref. 38) for alternative protease 
and fragmentation analyses. The proteomic data for the five prostate 

tumor samples are freely available at UCSD’s MassIVE database under 
accession number MSV000081552 (ref. 36), whereas their raw WGS and 
RNA-seq data are available at EGA under accession EGAS00001000900 
(ref. 35). Proteomic data for the eight ccRCC tumor samples are freely 
available at PDC under accession number PDC000411 (ref. 43), whereas 
the genomic and transcriptomic data are available at Genomic Data 
Commons (GDC, Project: CPTAC-3, Primary Site: Kidney) with dbGaP 
accession number phs001287, generated by the National Cancer Insti-
tute’s Clinical Proteomic Tumor Analysis Consortium (CPTAC).

Code availability
moPepGen is publicly available at https://github.com/uclahs-cds/
package-moPepGen (ref. 82). Data processing, analysis and visualiza-
tion scripts are available upon request.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Core graph algorithm of moPepGen. The graph algorithm 
of moPepGen implements the following key steps: a) A transcript variant graph 
(TVG) is generated from the transcript sequence with all associated variants. All 
three reading frames are explicitly generated to efficiently handle frameshift 
variants. b) Variant bubbles of the TVG are aligned and expanded to ensure the 

sequence length of each node is a multiple of three. c) Peptide variant graph 
(PVG) is generated by translating the sequence of each node of the TVG. d) 
Peptide cleavage graph is generated from the PVG in such a way that each node is 
an enzymatically cleaved peptide.
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Extended Data Fig. 2 | Differential handling of noncoding transcripts, 
subgraphs and circular RNAs. a) For coding transcripts, variants are only 
incorporated into the effective reading frames. For transcripts that are canonically 
annotated as noncoding, variants are added to all three reading frames to perform 
comprehensive three-frame translation. b) Subgraphs are created for variant 
types that involve the insertion of large segments of the genome, which can carry 
additional variants. c) The graph of a circular RNA is extended four times to capture 

all possible peptides that span the back-splicing junction site in all three reading 
frames. In the bottom panel, the nodes in magenta harbor the variant 130-A/T and 
the nodes in yellow harbor 165-A/AC. d) Illustration of a circRNA molecule with a 
novel open reading frame. Each translation across the back-splicing site may shift 
the reading frame. If no stop codon is encountered, the original reading frame is 
restored after the fourth crossing.
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Extended Data Fig. 3 | moPepGen demonstrates comprehensive results and 
deliberate biological assumptions. a) and b) Non-canonical peptide generation 
results from benchmarking of moPepGen, pyQUILTS and customProDBJ using 
only point mutations (SNVs) and small insertions and deletions (indels; a), 
and with inputs from point mutations, indels, RNA editing, transcript fusion, 
alternative splicing and circular RNAs (circRNAs). b). Top boxplot shows the 
number of peptides in each set intersection and right barplot shows the total 
number of non-canonical peptides generated by each algorithm in five primary 
prostate tumour samples (n = 5). c) Assumptions made by moPepGen for 
handling edge cases that differ from other algorithms. Start-codon-altering and 

splice-site-altering variants are omitted due to the uncertainty of the resulting 
translation and splicing outcomes. Transcripts with unknown stop codons do not 
have trailing peptide outputs because of the uncertainty of the trailing enzymatic 
cleavage site. Stop-codon-altering variants do not result in translation beyond 
the transcript end, adhering to central dogma. UTR: untranslated region. d) Non-
canonical database search results from benchmarking of moPepGen, pyQUILTS 
and customProDBJ using point mutations, indels, RNA editing, transcript fusion, 
alternative splicing and circRNAs (n = 5). All boxplots show the first quartile, 
median, to the third quartile, with whiskers extending to furthest points within 
1.5× the interquartile range.
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Extended Data Fig. 4 | Detection of novel open reading frame peptides across 
proteases. a) Peptide length distributions after in silico digestion with seven 
enzymes, as indicated by color, of the canonical human proteome and three-frame 
translated noncoding transcript open reading frames (ORFs). The dotted lines 
indicate the 7-35 amino acids peptide length range commonly used for database 
search. b) Noncoding peptide detection across ten enzyme-fragmentation 
methods in one deeply fractionated human tonsil sample. The top barplot shows 
the number of peptides in each set intersection and the right barplot shows the 
total number of non-canonical peptides from noncoding ORFs detected in each 
enzyme-fragmentation method, as indicated by covariate color. c) Optimal 
combinations of one to ten enzyme-fragmentation methods for maximizing the 
number of transcripts detected from the canonical proteome, or the number of 
ORFs detected from noncoding transcripts. The bottom covariate indicates the 

optimal combinations of enzyme-fragmentation methods from combinations 
of one to ten, with color indicating enzyme-fragmentation method. d) 
Noncoding transcript ORFs with peptides detected across four or more enzyme-
fragmentation methods, with recurrence count shown in the right barplot. The 
color of the heatmap indicates the number of peptides detected per ORF per 
enzyme-fragmentation method. e) Example ORFs with coverage by multiple 
proteases are shown, with peptides tiled according to detection in each enzyme-
fragmentation method, as indicated by covariate color. Representative fragment 
ion mass spectra of peptide-spectrum matches are shown, with theoretical spectra 
at the bottom and fragment ion matches colored (blue: b-ions, red: y-ions in). HCD: 
higher-energy collisional dissociation; CID: collision-induced dissociation; ETD: 
electron-transfer dissociation; m/z: mass-to-charge ratio.
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Extended Data Fig. 5 | Germline non-canonical peptide detection in mouse 
strain C57BL/6 N. a) Comparison of canonical and custom database sizes 
for the C57NL/6 N mouse. Germline database includes single-nucleotide 
polymorphisms (SNPs) and small insertions and deletions. b) Number of non-
canonical peptides detected from each database in each tissue (one sample per 
tissue), with database indicated by color. c) Comparison of a variant peptide-
spectrum match (PSM) spectra (top, both) with the theoretical spectra of the 

canonical peptide counterpart (left, bottom) as well as the theoretical spectra 
of the variant peptide harboring a SNP (right, bottom). Fragment ion matches 
are colored, with b-ions in blue and y-ions in red. m/z: mass-to-charge ratio. 
d) Noncoding transcripts with open reading frames yielding two or more non-
canonical peptides recurrently detected across tissues, with color indicating the 
number of peptides detected in each tissue.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Proteogenomic investigation of the Cancer Cell Line 
Encyclopedia. a) Number of non-canonical peptides generated per cell line, 
with color indicating peptide source. Bottom covariate indicates tissue of origin. 
b) and c) Number of variant peptides per cell line (n = 376) grouped by number 
of variants in combination in coding (b) and noncoding (c) transcripts. Lines 
indicate group median. d) Number of non-canonical peptides detected per cell 
line, colored by peptide source. Bottom covariate indicates tissue of origin. 
e) Per cell line, number of intragenic coding mutations (by VEP), mutations 
predicted to produce detectable non-canonical peptides and mutations 
detected through proteomics. f) Per cell line, number of transcript fusions, 
those predicted to produce detectable non-canonical peptides and fusions with 
detected peptide products. Color indicates tissue of origin. g) Fusion transcripts 
(upstream-downstream gene symbol) with detected peptides, with number 
of peptides shown across cell lines. Bar color indicates whether the upstream 

fusion transcript was coding or noncoding. Right covariate indicates tissue of 
origin. h) Fragment ion mass spectrum from peptide-spectrum match (PSM) of 
the non-canonical peptide at the junction of the FLNB-SLMAP fusion transcript. 
The peptide theoretical spectrum is shown at the bottom and fragment ion 
matches are colored (blue: b-ions, red: y-ions). i) Comparison of mass spectrum 
(top, both) from PSM of a non-canonical peptide with a single-nucleotide variant 
against Prosit-predicted MS2 mass spectra based on the canonical counterpart 
peptide sequence (left, bottom) and the detected variant peptide sequence 
(right, bottom). Fragment ion matches are colored, with b-ions in blue and 
y-ions in red. j) Cross-correlation (Xcorr) distribution of coding variant peptides 
PSMs against Prosit-predicted fragment mass spectra (solid lines, color indicate 
charge), in comparison with Xcorr of control canonical PSMs against Prosit-
predicted mass spectra (dotted lines). m/z: mass-to-charge ratio.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Functional investigation of non-canonical peptide 
detection in Cancer Cell Line Encyclopedia. a) Gene effect CERES scores for 
genes with detected non-canonical peptides (orange), detected canonical 
peptides only (pink) and no detected peptides (gray). A lower CERES score 
indicates higher gene dependency. Cell lines were selected based on the 
detection of non-canonical peptides in more than 10 genes. P-values were 
calculated using a two-sided Mann-Whitney U-test. The red vertical line indicates 
α = 0.05. The bottom panel represents data pooled across all genes and cell 
lines. The number of genes per group per cell line and Mann-Whitney U-test 
results are provided in Supplementary Table 9. b) Gene effect CERES score and 
c) mRNA abundance of KRAS in cell lines with only canonical peptides detected 

compared to those with detected non-canonical peptides (n = 290 and 12, 
respectively). P-values were calculated using a two-sided Mann-Whitney U-test. 
TPM: Transcript per million. d) Number of putative neoantigens predicted based 
on detected non-canonical peptides in cell lines with more than two neoantigens. 
The color indicates cell line tissue of origin. e) Recurrent neoantigens observed 
across multiple cell lines, along with their associated gene, variant, HLA genotype 
and the full peptide sequence as detected by trypsin-digested whole cell lysate 
mass spectrometry. The color in the left heatmap represents neoantigen binding 
affinity. Right covariate indicates tissue of origin. All boxplots show the first 
quartile, median, to the third quartile, with whiskers extending to furthest points 
within 1.5× the interquartile range.
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Extended Data Fig. 8 | Detection of non-canonical peptides from DIA 
proteomics. a) Number of variant peptides from different variant combinations 
generated using genomic and transcriptomic data from eight clear cell renal cell 
carcinoma (ccRCC) tumors (n = 8), grouped by the number of variant sources 
in combination. gVariant: germline single-nucleotide polymorphism and 
insertion/deletions (indels); sVariant: somatic single-nucleotide variant and 
indels; AltSplice: alternative splicing. b) Number of detected variant peptides 
in the data-independent acquisition (DIA) proteome of eight ccRCC tumors. 
c-e) Detection of non-canonical peptides harboring germline single-nucleotide 

polymorphisms (c), alternative splicing (d) and RNA editing sites (e) across genes. 
Heatmap colors indicate the number of peptides detected per gene per sample. 
The barplot indicates recurrence across samples. f) Illustration of non-canonical 
peptides derived from the canonical sequence FSGSNSGNTATLTISR in gene 
IGLV3-21 caused by RNA editing events. g-i) Extracted ion chromatograms of the 
canonical peptide (g) and non-canonical peptides derived from IGLV3-21 caused 
by RNA editing events: chr22:22713097 G-to-C (h) and chr22:22713111 A-to-G (i). 
All boxplots show the first quartile, median, to the third quartile, with whiskers 
extending to furthest points within 1.5× the interquartile range.
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Extended Data Fig. 9 | Detection of non-canonical peptides from genomic 
variants, alternative splicing and circular RNAs. a) Number of detected non-
canonical peptides in five primary prostate tumour samples per database tier 
(colored by database). b) Peptides as the result of a combination of two variants, 
with variant type indicated in left covariate and gene on the right. The heatmap 
shows presence of peptide across samples. c-f) Non-canonical peptide detection 
results across genes, with color of heatmap representing the number of peptides 
detected per gene per sample. The barplot indicates recurrence across samples, 
and when colored indicates variant type associated with the gene entry. The 
Variant database includes non-canonical peptides from coding transcripts with 
single-nucleotide polymorphisms (SNPs), single-nucleotide variants (SNVs), 
small insertion and deletion (indels), RNA editing, alternative splicing (Alt 

Splice) or transcript fusion (c). Noncoding database includes all peptides from 
noncoding transcript three-frame translation open reading frames (d) and 
noncoding peptides with any variants are included in the Noncoding Variant 
database (e). The Circular RNA database includes all peptides representing 
circular RNA open reading frames (ORFs) with or without other variants (f). 
The bottom covariate indicates prostate cancer sample. g) Mass spectrum 
from peptide-spectrum match of a non-canonical peptide spanning the back-
splicing junction between exon 29 and exon 24 of MYH10, reflective of circular 
RNA translation. The peptide theoretical spectrum is shown at the bottom and 
fragment ion matches are colored (blue: b-ions, red: y-ions in). m/z: mass-to-
charge ratio.
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