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Proteogenomics is limited by the challenge of modeling the complexities
of gene expression. We create moPepGen, a graph-based algorithm

that comprehensively generates non-canonical peptidesinlinear time.
moPepGen works with multiple technologies, in multiple species and on all
types of genetic and transcriptomic data. In human cancer proteomes, it
enumerates previously unobservable noncanonical peptides arising from
germline and somatic genomic variants, noncoding openreading frames,
RNA fusions and RNA circularization.

Asinglestretch of DNA cangiverise tomultiple protein productsthrough
genetic variation and through transcriptional, post-transcriptional and
post-translational processes, such as RNA editing, alternative splic-
ing and RNA circularization'*. The number of potential proteoforms
rises combinatorically with the number of possibilities at eachlevel, so
despite advancesin proteomics technologies*, much of the proteome
is undetected in high-throughput studies’.

The most common strategies to detect peptide sequences absent
from canonical reference databases’’ (that is, non-canonical peptides;
Supplementary Note 1), are de novo sequencing and open search.
Despite continued algorithmic improvements, these strategies
are computationally expensive, have elevated false-negative rates
and lead to difficult data interpretation and variant identification
issues'®". As a result, the vast majority of proteogenomic studies use
non-canonical peptide databases that haveincorporated DNAand RNA
alterations’. These databases are often generated using DNA and RNA
sequencing of the same sample, and thisimproves error rates relative
to community-based databases (for example, UniProt'?, neXtProt"
and the Protein Mutant Database') by focusing the search space””.

This type of sample-specific proteogenomics relies on the abil-
ity to predict all potential protein products generated by the com-
plexity of gene expression. Modeling transcription, translation and
peptide cleavage to fully enumerate the combinatorial diversity of

non-canonical peptides is computationally demanding. To simplify the
search-space, existing methods have focused on generating peptides
caused by individual variants or variant types'***, greatly increasing
false negative rates and even potentially resulting in false-positive
detectionsifthe correct peptideis absent from the database (Extended
DataTable1). Tofill this gap, we created a graph-based algorithm for the
exhaustive elucidation of protein sequence variations and subsequent
insilico non-canonical peptide generation. This method is moPepGen
(multi-omics peptide generator; Fig. 1a).

moPepGen captures peptides that harbor any combination of
small variants (for example, single-nucleotide polymorphisms (SNPs),
smallinsertions and deletions (indels) and RNA editing sites) occurring
on canonical coding transcripts, as well as on non-canonical transcript
backbones resulting from novel open reading frames (ORFs), transcript
fusion, alternative splicing and RNA circularization (Supplementary
Fig. 1). It performs variant integration, in silico translation and pep-
tide cleavage in a series of three graphs for every transcript, enabling
systematic traversal across every variant combination (Methods
and Extended Data Fig. 1a-d). All three reading frames are explicitly
modeled for both canonical coding transcripts and non-canonical
transcript backbones to efficiently capture frameshift variants and
facilitate three-frame ORF search (Extended Data Fig. 2a). Alternative
splicing events (for example, retained introns) and transcript fusions
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Fig.1|moPepGenis a graph-based algorithm that uncovers non-canonical
peptides with variant combinations. a, moPepGen algorithm schematic.
moPepGen is agraph-based algorithm that generates databases of non-canonical
peptides that harbor genomic and transcriptomic variants (for example,
single-nucleotide variant (SNV), smallinsertion and deletion (INDEL), RNA
editing, alternative splicing, gene fusion and circular RNA (circRNA)) from
coding transcripts, as well as from novel open reading frames of noncoding
transcripts. C-term, C terminus; N-term, N terminus. b,c, moPepGen achieves
linear runtime complexity when fuzz testing with SNVs only (b) and with SNVs
andindels (c), based on1,000 simulated test cases in each panel. d, A variant
peptide from SYNPO2 that harbors a small deletion and an SNV. Fragment ion

mass spectrum from peptide-spectrum match (PSM) of the non-canonical
peptide harboring two variants (top, both) is compared against the canonical
peptide theoretical spectra (left, theoretical spectra at the bottom) and against
the variant peptide theoretical spectra (right, bottom). Fragment ion matches
are colored, with b-ionsinblue and y-ionsin red. e-g, A somatic SNV D1249N

in AHNAK was detected in DNA sequencing of a prostate tumor (CPCG0183) at
chrl1:62530672 (e), in RNA sequencing (f) and as the non-canonical peptide
MDIDAPDVEVQGPNWHLK (g). RNA-Seq, RNA sequencing; WGS, whole-genome
sequencing. h,i, Fragmention mass spectrum from PSM of the canonical peptide
MDIDAPDVEVQGPDWHLK (h) and the non-canonical peptide (i). m/z, mass-to-
chargeratio.

are modeled as subgraphs with additional small variants (Extended
DataFig. 2b). Graphs are replicated four times to fully cover peptides
of back-splicing junction read-through in circular RNAs (circRNAs;
Extended Data Fig. 2¢,d). moPepGen outputs non-canonical peptides
that cannot be produced by the chosen canonical proteome data-
base. It documents all possible sources of each peptide to eliminate
redundancy, such as where different combinations of genomic and
transcriptomic events can produce the same non-canonical peptide.

We first validated moPepGen using 1,000,000 iterations of fuzz
testing (Supplementary Fig. 2). For each iteration, a transcript model,
itsnucleotide sequence, and aset of variants composed of all supported
variant types were simulated. Thennon-canonical peptides generated by
moPepGenwere compared with those fromaground-truth brute-force
algorithm. moPepGen demonstrated perfect accuracy and linear runt-
ime complexity (4.7 x 107 seconds per variant) compared to exponential

runtime complexity for the brute-force method (Fig. 1b,c). Acomprehen-
sive non-canonical peptide database of human germline polymorphisms
was generated with 15 GB memory in 3.2 h on a16-core compute node;
the brute-force method was unable to complete this task.
Havingestablished the accuracy of moPepGen, we next compared
it to two popular custom database generators, customProDBJ'" and
pYQUILTS?. We tested all three methods on five prostate tumors
with extensive multi-omics characterization® . We first evaluated
the simple case of germline and somatic point mutations and indels.
Most peptides (84.0 + 0.9% (median + median absolute deviation
(MAD))) were predicted by all three methods, with moPepGen being
modestly more sensitive (Extended Data Fig.3a). Next, we considered
thebiological complexity of alternative splicing, RNA editing, RNA cir-
cularization and transcript fusion. Only moPepGen was able to evalu-
ate peptides generated by all four of these processes, and therefore
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80.2 +2.1% (median + MAD) of peptides were uniquely predicted by
moPepGen (Extended Data Fig. 3b). By contrast only 3.2% of peptides
were not predicted by moPepGen, and these corresponded to specific
assumptions around the biology of transcription and translation made
by other methods (Extended Data Fig. 3c and Methods). By generat-
ing amore comprehensive database, moPepGen enabled the unique
detection of 53.7 + 12.2% (median + MAD) peptides from matched
proteomic data (Extended Data Fig. 3d). An example of a complex
variant peptide identified only by moPepGen is the combination of
a germline in-frame deletion followed by a substitution in SYNPO2
(Fig. 1d). In addition, moPepGen'’s clear variant annotation system
readily enables peptide verification across the central dogma. For
example, the somatic mutation D1249N in AHNAK was detected in~30%
of both DNA and RNA reads and was detected by mass spectrometry
(MS; Fig. 1e-i), confirmed by three search engines. Taken together,
these benchmarking results demonstrate the robust and comprehen-
sive nature of moPepGen.

Toillustrate the use of moPepGen for proteogenomic studies, we
first evaluated it across multiple proteases (Extended Data Fig. 4a).
Usingindependent conservative control of false discovery rate (FDR)
across canonical and custom databases (Methods and Supplementary
Fig.3)"8, we focused on detection of novel ORFs (thatis, polypeptides
from transcripts canonically annotated as noncoding) across seven
proteases” in a deeply fractionated human tonsil sample® (Supple-
mentary Table 1). moPepGen enabled the detection of peptides from
1,787 distinct ORFs previously thought to be noncoding, and these
peptides were most easily detected with the Arg-C protease (Extended
DataFig.4b), suggestingalternative proteases may enhance noncoding
OREF detection (Extended Data Fig. 4¢). In total, 184 noncoding ORFs
were detected across four or more proteomic preparation methodsin
this single sample, demonstrating that moPepGen canreliably identify
novel proteins (Extended Data Fig. 4d,e).

We next sought to demonstrate that moPepGen can benefit analy-
sesindifferentspecies by studying germline variationin the C57BL/6 N
mouse®”*’, Using strain-specific germline SNPs and indels from the
Mouse Genome Project®”*’, moPepGen predicted 5,481 non-canonical
peptidesarising fromvariantsin protein-coding genes and 15,475 pep-
tides from noncoding transcript novel ORFs (Extended Data Fig. 5a).
Across the proteomes of three bulk tissues (cerebellum, liver and
uterus), we detected 18 non-canonical peptides in protein-coding
genes and 343 from noncoding ORFs (Extended Data Fig. 5b-d and
Supplementary Table 2). Thus, moPepGen can support proteogenom-
icsinnon-human studies to identify variants of protein-coding genes
and novel proteins.

Toevaluate the use of moPepGen for somatic variation, we analyzed
375human cancer cell line proteomes with matched somatic mutations
and transcript fusions*®* (Supplementary Data). moPepGen pro-
cessed eachcelllinein2:58 min (median +1:20 min, MAD), generating
2,683 + 2,513 (median £ MAD) potential non-canonical variant peptides
per cellline. Thenumber of predicted variant peptides varied strongly
with tissue of origin, ranging from median of 838 t0 16,255 (Fig. 2a),
and was driven largely by somatic mutations in protein-coding genes
and by fusion events in noncoding genes (Extended Data Fig. 6a-c).
Searching the cell line proteomes identified 39 + 27 (median + MAD)
non-canonical peptides per cell line (Methods and Supplementary
Fig.4). The majority of these were derived from noncoding transcript
ORFs (Extended Data Fig. 6d and Supplementary Table 3). Variant pep-
tides from coding somatic mutations were more easily detected than
those from transcript fusion events (Extended DataFig. 6e,f). Atotal of
26 genes had variant peptides detected in cell lines from three or more
tissues of origin, including the cancer driver genes TP53, KRAS and HRAS
(Fig.2b).Peptide evidence was also found for fusion transcripts involv-
ing cancer driver genes like MET and STK11 (Extended Data Fig. 6g,h).
We validated non-canonical peptide-spectrum matches (PSMs) by
predicting tandem mass (MS2) spectra using Prosit*? and verifying

that variant peptide MS2 spectra correlated better with predictions
based on the matched non-canonical peptide sequences than predic-
tions based on their canonical peptide counterparts (Methods and
Extended DataFig. 6i). Coding variant peptide PSMs also showed high
cross-correlations with their Prosit-predicted variant MS2 spectra, on
parwith those of canonical PSMs and their canonical spectra (Extended
DataFig. 6j). Thus, moPepGen can effectively and rapidly detect variant
peptides arising from somatic variation. These variant peptides may
also prove to harbor functional consequencesin future studies. Genes,
such as KRAS, trended toward greater essentiality for cell growth in
multiple cell lines with non-canonical peptide hits, and the effects may
beindependent of gene dosage (Extended DataFig. 7a—c). Across cell
lines, detected variant peptides were also predicted to giverise to 416
putative neoantigens (3.0 £ 1.5, median + MAD per cell line; Extended
Data Fig. 7d and Supplementary Table 4), including recurrent neoan-
tigens in KRAS, TP53 and FUBP3 (Extended Data Fig. 7e).

We next sought to demonstrate the use of moPepGen in data-
independent acquisition (DIA) MS using eight clear cell renal cell
carcinoma tumors with matched whole-exome sequencing, RNA
sequencing and DIA proteomics®. In each tumor, moPepGen pre-
dicted 157,016 + 34,215 (median + MAD) unique variant peptides from
protein-coding genes (Extended Data Fig. 8a). Using a Prosit-generated
spectral library, we detected 307 + 112 (median + MAD) variant pep-
tides in each tumor using DIA-NN** (Extended Data Fig. 8b and Sup-
plementary Table 5). Germline-SNP and alternative splicing were the
most common sources of detected variant peptides (Extended Data
Fig. 8c,d). Non-canonical peptides derived from RNA editing events
weredetectedin21genes (Extended DataFig. 8e-i). Thus, moPepGen
can enable the detection of variant peptides from DIA proteomics.

Finally, to demonstrate the use of moPepGen on complex and
comprehensive gene expression data, we analyzed five primary pros-
tate cancer samples with matched DNA whole-genome sequencing,
ultra-deep ribosomal-RNA-depleted RNA sequencing and MS-based
proteomics® . moPepGen generated 1,382,666 + 64,281 (median +
MAD) unique variant peptides per sample, spanning 115 variant com-
bination categories (Fig. 2¢). Searching this database resulted in the
detection of 206 + 56 (median + MAD) non-canonical peptides per
sample, with 138 + 28 (median + MAD) derived from protein-coding
genes (Extended Data Fig. 9a and Supplementary Table 6). The distri-
bution of intensities and Comet expectation scores of non-canonical
PSMs closely resembled that of canonical PSMs and was distinct
from all decoy hits (Supplementary Fig. 5), lending confidence in
our non-canonical peptide detection. All samples harbored proteins
containing multiple variant peptides (9 + 1.5, median + MAD proteins
per tumor; range 2-6 variant peptides per protein; Fig. 2d). Some
detected peptides harbored multiple variants, including two from
prostate-specific antigen (PSA from the KLK3 gene; Extended Data
Fig. 9b). Germline SNPs were the major common cause of variant
peptides on coding transcripts and alternative splicing events were
the most common cause on noncoding transcripts (Extended Data
Fig.9c-e).Nine genes showed recurrent detection of peptides caused
by circRNA back-splicing (Extended Data Fig. 9f-g), with36/78 circRNA
PSMs validated by de novo sequencing (Supplementary Table 7)*.
These recurrent circRNA-derived peptides were verified in five addi-
tional prostate tumors (Supplementary Fig. 6). We also detected
four peptides from noncoding transcripts with the recently reported
tryptophan-to-phenylalanine substitutants*. Thus, moPepGen can
identify peptidesresulting from highly complex layers of gene expres-
sionregulation.

moPepGen is a computationally efficient algorithm that enu-
merates transcriptome and proteome diversity across arbitrary vari-
ant types. It enables the detection of variant and novel ORF peptides
across species, proteases and technologies. moPepGen integrates
into existing proteomic analysis workflows, and can broadly enhance
proteogenomic analyses for many applications.
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Methods

Transcript Variant Graph

A transcript variant graph (TVG) is instantiated for each transcript,
incorporating all associated variants. In a TVG, nodes are transcript
fragments with reference or alternative nucleotide sequences, whereas
edges are the opening or closing of variant nodes connecting them to
thereference sequence, or the elongation of reference sequences. The
TVGstartswith threelinear nodes of the entire transcript sequence rep-
resenting the three reading frames, offset by 0,10or 2 nucleotides from
thetranscript5’end. A variantisincorporated into the graph by break-
ingthe node at the variant’s start and end positions and attaching a new
node with the alternative sequence to the new upstream and down-
streamnodes. Anin-frame variantis represented as anode withincom-
ing and outgoing nodes in the same reading frame subgraph, whereas
frameshifting variants have incoming nodes and outgoing nodes in
different reading frames. The outgoing reading frameindex equals to
(Sre~Sar) mod 3, where S, +is the length of the reference sequence and
Sa:is the length of the alternative sequence. For transcripts with an
annotated known canonical ORF, variants are only incorporated into
the subgraph of the appropriate reading frame (Extended Data Fig. 2a).
If frameshifting variants are present, downstream variants are also
incorporated into the subgraphs of the outgoing frameshift nodes. For
transcripts without anannotated ORF, all variants areincorporated into
all three reading frames (Extended Data Fig. 2a). Large insertions and
substitutions as the result of alternative splicing events (for example,
retained introns, alternative 3’/5’ splicing, etc.) are represented as
subgraphs that can carry additional variants (Extended Data Fig. 2b).

Variant bubbles and peptide variant graph

After the TVG hasbeen populated with all variants, nodes that overlap
with each other in transcriptional coordinates are aligned to create
variant bubbles within which all nodes point to the same upstream
and downstream nodes (Extended Data Fig. 1b). This is done by first
finding connectionnodesin the TVG, the reference nodes without any
variants that connect two variant bubbles after they are aligned. The
root nodeisthe first connection node, and the next connection node is
found by looking for the first commonly connected downstream node
with length of five or more nucleotides that is outbound to more than
one node (Supplementary Note 2 and Supplementary Fig. 7). Nodes
between the two connection nodes are then aligned to form a variant
bubble by generating all combinations of merged nodes so that they
all point to the same upstream and downstream nodes (Extended Data
Fig.1b). Overlapping variants in the variant bubble are automatically
eliminated because they are disjoint. The sequence lengths of nodes
inthe variant bubble are also adjusted by taking nucleotides from the
commonly connected upstream and downstream nodes to ensure
that they are multiples of three. A peptide variant graph (PVG) is then
instantiated by translating the nucleotide sequence of each TVG node
intoamino acid sequences.

Peptide cleavage graph

A PVG is converted into a peptide cleavage graph (PCG), where each
edge represents an enzymatic cleavage site (Extended Data Fig. 1c).
For connection nodes, all enzymatic cleavage sites are firstidentified,
andthenodeis cleaved at each cleavage site. Because enzymatic cleav-
age site motifs can span over multiple nodes (for example, the trypsin
exception of not cutting given K/P but cutting given WK/P), connection
nodes are also merged with each downstream and/or upstream node
and cut at additional cleavage sites if found. To optimize run time,
different merge-and-cleave operations are used depending on the
number ofincoming and outgoing nodes, and the number of cleavage
sites in a node (Supplementary Fig. 8). Hypermutated regions where
variant bubbles contain many variants and/or the lack of cleavage sites
in connection nodes canresultin an exponential increase in the num-
berofnodesinthealigned variant bubble. We use a pop-and-collapse

strategy, such that when merge-and-cleave is applied to a connection
node, x number of amino acids are popped from the end of each node
inthevariant bubble. The popped nodes are collapsed ifthey share the
same sequence. The pop-and-collapse operationis only applied when
thenumber of nodesinavariantbubble exceeds a user-defined cutoff.

Calling variant peptides

Variant peptides with the permitted number of miscleavages are called
by traversing through the PCG. We use a stage-and-call approach that
firstvisitsallincoming nodes to determine the valid ORFs of a peptide
node (Supplementary Note 3). Stage-and-call also allows cleavage-gain
mutations and upstream frameshift mutations to be carried over to
the downstream peptide nodes. Peptide nodes are then extended by
merging with downstream nodes to call variant peptides with miscleav-
ages (Supplementary Note 4). For noncoding transcripts, novel ORF
start sites, including those caused by start-gain mutations, are found
bylooking for any methionine (M) in all three subgraphs. Terminology
used in subsequent sections, including canonical and non-canonical
database, variant peptides, non-canonical peptides and proteoform,
isdefined in Supplementary Note 1.

Fusion and circular transcripts

Most fusion transcript callers detect fusion events between genes,
causing ambiguity of which transcripts of the genes are involved in a
particular fusion event. We took the most comprehensive approachand
endeavored to capture all possible variant peptides by assuming that
afusion event could happen between any transcript of the donor and
accepter genes. Fusiontranscripts are considered as novel backbones
in graph instantiation, with an individual graph instantiated for each
donorand acceptor transcript pair. Single-nucleotide variants (SNVs)
and small insertion/deletions (indels) of both donor and acceptor
transcriptsareincorporatedinto the TVG. The translated and cleaved
PCGisthen traversed to call variant peptides, identical to a canonical
transcript backbone. If the fusion breakpoint occurs in anintron, the
intronic nucleotide sequence leading up to or following the break-
pointis retained as unspliced, and its associated intronic variants are
included. The ORF start site of the donor transcriptis usedif exists when
calling variant peptides. The fusion transcriptis treated asanoncoding
transcriptif the donor transcriptis annotated as noncoding.

Similar to fusion transcripts, circRNAs are treated as novel
backbones, with an individual graph instantiated for each circRNA
(Extended DataFig.2c). A circular variantgraph (acounterpartto TVG)
isinstantiated by connecting the linear sequence of the circRNA onto
itself at the back-splice junction and incorporating SNVs and indels.
Novel peptides cantheoretically be translated from circRNAs if astart
codonis present, by ribosome read-through across the back-splicing
junctionsite. Ifthe circRNA lengthisnot amultiple of three nucleotides,
translation across the back-splicing site induces a frameshift. Without
astop codon, theribosome may traverse the circRNA up to three times
before theamino acid sequencerepeats. Therefore, moPepGen extends
thecircular graphlinearly by appending three copies of each reading
frame as asubgraphto account for frameshifts. The extended graphis
then translated to a PVG and converted to a PCG. Variant peptides are
called by treating every circRNA as anoncoding transcript and scanning
allnovel start codonsin all three reading frames.

Biological assumptions for edge cases

moPepGen applies various assumptions to selectively include or
exclude certain variant events or peptides (Extended Data Fig. 3c).
Start-codon-altering variants are excluded due to the uncertainty
around whether and where translation will still occur. Similarly,
splice-site-altering variants are omitted due to the complexity of splic-
ing determinants, which canresultin skipping to the next canonical or
non-canonical splice site. We terminate translation at the last complete
peptide when stop codons are unknown, as incomplete transcript
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annotations create ambiguity in downstream sequences, obscuring
enzymatic cleavage sites. Stop-codon-altering variants do not extend
translationbeyond the transcript, as the downstream genomic region
isnotassumed to be part of the RNA transcript.

GVF file format and parsers

Genomic (SNPs, SNVs, indels) and transcriptomic variants (fusiontran-
scripts, RNA editing sites, alternative splicing transcripts, circRNAs) are
first converted into gene-centric entries for each transcript that they
impact. We defined a gene-based GVF (genetic variant format) derived
from VCF (variant calling format) to store all relevant information for
each variant, including the gene ID and offset. moPepGen includes
built-in parsers to convert variant caller outputsinto GVFs. SNPs, SNVs
andindels require the annotation via Variant Effect Predictor (VEP)* for
compatibility with the parseVEP module. Parsers for fusion, alternative
splicing, RNA editing and circRNA operate directly on native outputs.
moPepGenisimplementedin Python and supports easy extension and
addition of new parsers. The full Nextflow pipeline (https://github.com/
uclahs-cds/pipeline-call-NonCanonicalPeptide)*®***°, automates data
preprocessing, peptide prediction and database tiering, with optional
transcript abundance filtering. Our DNA data processing pipeline is
described elsewhere’".

Fuzz testing and brute force algorithm

To validate moPepGen, we implemented a fuzz testing framework
where transcripts with varying properties (for example, coding status,
strand, selenocysteine and start or stop codon position) and artificial
sequences are simulated. Eachis paired with simulated variants across
all supported types. The resulting peptides are compared against
those generated by a brute force algorithm, which iterates through
all possible variant combinations to identify non-canonical peptides.
The brute force algorithm also performs three-frame translation for
noncodingtranscripts. Fuzz testing and the brute force algorithmare
included in the moPepGen package.

Datasets

Cancer Cell Line Encyclopedia proteome. Proteomic charac-
terization of 375 cell lines from the Cancer Cell Line Encyclopedia
(CCLE) was obtained from Nusinow et al.*". Fractionated raw mass
spectrometry (MS) data were downloaded from MassIVE (project
ID: MSV000085836). Somatic SNVs and indels, and fusion transcript
calls were downloaded from the DepMap portal (https://depmap.org/
portal, 22Q1). Somatic SNVs and indels were converted to GRCh38
coordinates from hgl9 using CrossMap (v0.5.2)*2. Gene and transcript
IDs were assigned to each SNV/indel using VEP (v104)*® with genomic
annotation GTF downloaded from GENCODE (v34)**. Fusion results
were aligned to the GENCODE v34 reference by first lifting over the
fusion coordinates to GRCh38 using CrossMap (v0.5.2). After lifto-
ver, the records were removed if the donor or acceptor breakpoint
location was no longer associated with the gene, if either breakpoint
dinucleotides did not match with the reference or if either gene ID was
not presentin GENCODE (v34).

Mouse proteome. MS-based proteome of mouse strain C57BL/6 Nwas
obtained from Giansanti et al.””. Fractionated raw MS data of the liver,
uterus and cerebellum proteomes were downloaded from the PRIDE
repository (project ID: PXD030983). Germline SNPs and indels were
obtained from the Mouse Genomes Project® with GRCm38 VCFs down-
loaded from the European Variation Archive (accession: PRJEB43298).
Germline SNPs and indels were annotated using VEP (v102) against
Ensembl GRCm38 (v102)*.

Alternative protease and fragmentation proteome. A human
tonsil tissue processed using ten different combinations of pro-
teases and peptide fragmentation methods (ArgC_HCD, AspN_HCD,

Chymotrypsin_CID, Chymotrypsin_HCD, GluC_HCD, LysC_HCD, LysN_
HCD, Trypsin_CID, Trypsin_ETD, Trypsin_HCD) was obtained from Wang
et al.®®, Fractionated raw mass spectrometry data were downloaded
fromthe PRIDE repository (project ID: PXD010154).

DIA proteome. DIA proteomic data from eight clear cell renal cell car-
cinoma (ccRCC) samples were obtained from Li et al.*>. Raw mass spec-
trometry datawereretrieved from the Proteomic DataCommons (PDC,
PDC000411). WXS and RNA-seq BAM files were obtained from Genomic
Data Commons (GDC, Project: CPTAC-3, Primary Site: Kidney). WXS
datawas processed using astandardized pipeline to identify germline
SNPs, somatic SNVs and indels®. BAM files were reverted to FASTQusing
Picard toolkit (v2.27.4) and SAMtools (v1.15.1)”, realigned to GRCh38
using BWA-MEM2 (v2.2.1)*%, and calibrated using BQSR and IndelRea-
lignment from GATK (v4.2.4.1)”". Germline SNPs and indels were called
following GATK (v4.2.4.1) best practices®**, whereas somatic SNVs and
indels were called using Mutect2 (from GATK v4.5.0.0), followed by
annotation with VEP (v104)** against GENCODE v34.RNA-seq BAM files
were converted to FASTQ using Picard toolkit (v2.27.4) and SAMtools
(v1.15.1) and re-aligned to GRCh38.p13 with GENCODE v34 GTF using
STAR (2.7.10b)*. Transcript fusion events were called using STAR-Fusion
(v1.9.1)%°, alternative splicing events were called using rMATS (v4.1.1)*!
and RNA editing sites were called using REDItools2 (v1.0.0)®* using
paired RNA and DNA BAMs.

Prostate cancer proteome. The proteomic characterization of
five prostate cancer tissues were obtained from Sinha et al.>*. Raw
mass spectrometry data were downloaded from MassIVE (project
ID: MSV000081552). Germline SNPs and indels, as well as somatic
SNVs and indels, were obtained from the ICGC Data Portal (Project
code: PRAD-CA). Variants were indexed using VCFtools (v0.1.16)%
and converted to GRCh38 using Picard toolkit (v2.19.0), followed by
chromosome name mapping from the Ensembl to the GENCODE sys-
tem using BCFtools (v1.9-1)*. Mutations were annotated using VEP
(v104)* against GENCODE (v34). Raw mRNA sequencing data were
obtained from Gene Expression Omnibus (accession: GSE84043).
Transcriptome alignment was performed using STAR (v2.7.2) to refer-
ence genome GRCh38.p13 with GENCODE (v34) GTF and junctions
were identified by setting the parameter-chimSegmentMin 10 (ref.59).
CIRCexplorer2 (v.2.3.8) was used to parse and annotate junctions for
circRNA detection®. Fusion transcripts were called using STAR-Fusion
(v1.9.1)°°. RNA editing sites were called using REDItools2 using paired
RNA and DNA BAMs (v1.0.0)%. Alternative splicing transcripts were
called using rMATS (v4.1.1)°".

Canonical database search

All MS raw files (.raw) were converted to mzML using ProteoWizard
(3.0.21258)%. The GRCh38 human and the GRCm38 mouse canonical
proteome databases were obtained from GENCODE (v34) and Ensembl
(v102), respectively, with common contaminants®® added and reversed
sequences appended for target-decoy FDR control. Database searches
were performed using Comet (v2019.01r5)%” with static modifications
of cysteine carbamidomethylation, and up to three variable modi-
fications (methionine oxidation, protein N-terminus acetylation,
peptide N-terminus pyroglutamate formation), under full trypsin
digestion with up to two miscleavages (except for the tonsil samples
processed with alternative enzymes), for peptide lengths 7-35. For
CCLE, static modification of tandem mass tag (TMT; 10plex) on the pep-
tide N-terminus and lysine residues and variable modification of TMT
on serine residues were additionally included, following the original
study. CCLE datawere searched inlow resolution with 20 ppm precur-
sormasstolerance, 0.5025 Dafragment mass tolerance, and clear TMT
my/zrange, following the original publication. All other datasets used
high-resolution label-free quantification, with precursor mass toler-
ance of 20 ppm (mouse), 10 ppm (tonsil) and 30 ppm (prostate), and
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fragment mass tolerance of 0.025 Da for tonsil or 0.01 Da otherwise,
following original publications. Tonsil proteomes were searched with
the appropriate fragmentation method setting and with the protease
used insample preparation, with a maximum of two miscleavages for
Lys-Cand Arg-C, three miscleavages for Glu-C and Asp-N and four mis-
cleavages for chymotrypsin, as in the original publication®. The eight
DIA ccRCC proteomes were not searched against a canonical database.
Peptide-level target-decoy FDR calculation was performed using
the FalseDiscoveryRate module from OpenMS (v3.0.0-1f903c0)*® using
the formula (D +1)/(T + D), where D and T are the numbers of decoy
and target PSMs, respectively. Peptides were filtered at 1% FDR, and
PSMs were removed from the corresponding mzML for subsequent
non-canonical database search. Post hoc cohort-level FDR was calcu-
lated to verify an FDR cutoff smaller than 1%. Peptide quantification
was performed using OpenMS FeatureFinderldentification (v3.0.0-
1f903c0)*’ with ‘internal IDs only’ and adjusted precursor mass toler-
ances as above, and otherwise default parameters. TMT quantification
was performed using OpenMS IsobaricAnalyzer (v3.0.0-1f903c0),
withoutisotope correction due to absence of correction matrix.

Non-canonical database generation

Human (GRCh38) and mouse (GRCm38) reference proteomes were
obtained from GENCODE (v34) and Ensembl (v102), respectively.
Non-canonical peptide databases were generated with trypsin diges-
tion of up to two miscleavages and peptide lengths 7-25, except for
alternative protease samples. Alternative translation peptides were
generated using callAltTranslation, including those with selenocyst-
eine termination’ or W > F substitutants*®. Peptides from noncod-
ing ORFs were generated using callNovelORF with ORF order as min
and with or without alternative translation. Noncoding ORF peptide
databases were also generated for each alternative protease used in
processing of the tonsil proteome, with appropriate number of maxi-
mum miscleavages as outlined above.

Non-canonical peptide databases were generated for 376 CCLE
cell lines, 375 of which have non-reference channel proteomics char-
acterization. This included all 10 cell lines in the bridge line and 366
non-reference cell lines with mutation data. Of the 378 non-reference
channelsacross 42 plexes, three cell lines were duplicated, seven were
inthebridge line, two didn’t have mutation or fusioninformation and
additional eight didn’t have fusioninformation. Variant databases from
all cell lines in a TMT plex, including the ten cell lines in the reference
channel, were merged along with noncoding ORF peptides to generate
plex-level databases. Plex-level databases were split into three tiers:
‘Coding’ (SNVs, indels and fusion in coding transcripts), ‘Noncoding’
(novel ORFs) and ‘Noncoding Variant’ (SNVs, indels and fusionin non-
coding transcripts).

Non-canonical peptide databases for the proteome of mouse
strain C57BL/6 N were generated by calling variant peptides based on
germline SNPs and indels, followed by merging with the noncoding
ORF peptides. The resulting non-canonical peptides were then split
into ‘Germline’ (variants in coding transcripts), ‘Noncoding’ (novel
ORFs) and ‘Noncoding-Germline’ (variantsin noncoding transcripts).

For the eight ccRCC tumors, sample-specific variant peptides were
called fromgermline/somatic SNVs and indels, RNA editing, transcript
fusion and alternative splicing. Resulting peptides were merged with
noncoding ORF and alternative translation peptides and split into
four tiers: ‘Variant’ (variants in coding transcripts), ‘Noncoding’ (novel
OREFs), ‘Noncoding Variant’ (variantsin noncoding transcripts) and ‘Alt
Translation’ (selenocysteine termination and W > F substitutants*®).

For the five prostate tumors, variant peptides were called fromall
available genomic and transcriptomic variants, including germline/
somatic SNVs and indels, RNA editing sites, transcript fusions, alter-
native splicing and circRNA. These peptides were then merged with
the noncoding ORF and alternative translation peptides and split
into five tiers: ‘Variant’ (variants in coding transcripts), ‘Noncoding’

(novel ORFs), ‘Noncoding Variant’ (variants in noncoding transcripts),
‘Circular RNA’ (circRNA ORFs) and ‘Alt Translation’ (selenocysteine
terminationand W > F substitutants*®).

Non-canonical database search

Non-canonical database searches were performed similarly to canon-
ical proteome searches for each dataset, as described in detail above.
Custom databases of peptide sequences were concatenated with the
reverse sequence for FDR control. Non-canonical peptide searches
with Comet (v2019.01r5) were set to ‘no cleavage’ and did not per-
mit protein N-terminus modifications or clipping of N-terminus
methionine. Peptide-level FDR was set to 1% independently for each
tier of non-canonical database, and PSMs of peptides that passed
FDR were removed from the mzML for subsequent searches. Post
hoc cohort-level FDR was calculated to verify an FDR cutoff smaller
than 10% in tiers with at least 100 PSMs, as cohort-level FDR is not
meaningful for smaller tiers. Each database tier thus had independ-
ent FDR control using database-specific decoy peptides, and aspec-
trum is excluded from subsequent searches after finding its most
probable match. This strategy minimizes false-positives caused by
joint FDR calculation with canonical peptides and enables a con-
servative detection of non-canonical peptides”®, For CCLE, peptides
were only considered for detection and quantitation for a cell line if
they existed in the sample-specific database. For prostate tumors,
additional searches were conducted with the same non-canonical
databases using MSFragger (v3.3)”' and X!Tandem (v2015.12.15)* with
equivalent parameters for verification. For all datasets, quantified
peptides were distinguished by charge and variable modifications,
and detected but not quantified peptides were excluded from sub-
sequent analysis.

DIA non-canonical spectral library search

Raw files were converted to.mzML files using ProteoWizard (3.0.21258).
Sample-specific variant peptide FASTA databases were generated using
the aforementioned non-canonical database generation pipeline, with
individual spectrallibraries.msp files generated by Prosit*’. Prosit was
configured with instrument type of LUMOS, collision energy of 34,
and fragmentation method of HCD, with all default parameters oth-
erwise. Searches were conducted using DIA-NN (v1.8.1)** against the
sample-specific predicted variant peptide spectral libraries with pro-
tein inference disabled, a g-value cutoff of 0.01, and ‘high precision’
quantification.

Neoantigen prediction

Neoantigens were predicted from non-canonical peptides detected in
CCLE proteomes. Cell line-specific HLA genotype was inferred using
OptiType (v1.3.5)” from WGS or WXS data. Detected non-canonical
peptides from the ‘Coding’ tier were converted to FASTA and ana-
lyzed using MHCflurry (v2.0.6)”* with default parameters and cell
line-specific HLA genotypes.

Statistical analysis and data visualization

All statistical analysis and data visualization were performed in the
R statistical environment (v4.0.3), with visualization using Boutro-
sLab.plotting.general (v6.0.2)”. All boxplots, except for Extended
DataFig. 7a, show all data points, the median (center line), upper and
lower quartiles (box limits), and whiskers extend to the minimumand
maximum values within 1.5 times the interquartile range. In Extended
Data Fig. 7a, data are summarized as boxplots to improve visual clar-
ity without individual points due to the large number of gene and cell
line combinations. All comparisons were performed on biological
replicates, defined as independent patients, tumors, or cell lines as
appropriate to each analysis. Schematics were created in Inkscape
(v1.0) and Adobe lllustrator (27.8.1), and figures were assembled using
Inkscape (v1.0).
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Gene dependency association analysis. Gene dependency data
from CCLE CRISPR screens were downloaded from the DepMap data
portal (https://depmap.org/portal, 24Q2). Twelve cell lines with
non-canonical peptide detections in proteomic data from at least ten
genes were selected. The CERES scores™ of genes with non-canonical
peptide hits were compared to those without, using the Mann-Whitney
U-test. Additionally, pooled CERES scores across all genes and cell lines
were compared between the two groups using the same test. For KRAS,
CERES scores and RNA abundance were compared between cell lines
with non-canonical peptide detections in proteomic data and those
with only canonical peptides, using the Mann-Whitney U-test.

Spectrum visualization and validation. Target PSM experimental
spectra were extracted from mzML files using pyOpenMS (v3.1.0)””
and visualized in R. Theoretical spectra were generated from the
target peptide sequences using the TheoreticalSpectrumGenerator
module of OpenMS and compared to the experimental spectra using
hyperscores via the HyperScore module with consistent parameters
asdescribed above (for example, fragment mass tolerance). Fragment
ion matching between the experimental and theoretical spectra was
performed using a similar approach to IPSA’®. Theoretical spectra
with predicted fragment peak intensities were generated using Prosit
via Oktoberfest (v0.6.2)”° with parameters (for example, fragmen-
tation method and energy) matching the original publication* and
compared using cross-correlation® with settings matching Comet
searches (for example, fragment_bin_offset). To assess the distribu-
tion of cross-correlation values for variant peptide PSMs, we randomly
selected1,000 canonical PSMs from each of the 42 TMT-plexes as con-
trol. circRNA peptide PSMs were validated using the Novor algorithm
through app.novor.cloud, using parameters (for example, fragmenta-
tion method, MS2 analyzer, enzyme, precursor and fragment mass
tolerance) consistent with database searches®.

Cohort-level FDR. A posthocapproachwas used to estimate the FDR
threshold at the cohort level for each database tier. Within each sample
and database tier, we firstidentified the target hit with the highest FDR
value under the 1% threshold, denoted as FDR;:

FDR; = ma FDR;|FDR; < 0.01
’je{1,2x( |FDR; < )

,,,,, n}

Thenumber of decoy and target hits with FDR values less than FDR,
foreachsample was tallied. The equivalent cohort-level FDR threshold
was then calculated by dividing the total number of decoy hits by the
total number of target and decoy hits across the cohort:

> 1(Decoy Hits FDR; < FDR;)

Cohort — level FDR cutoff =
> 1(Target & Decoy Hits FDR; < FDR;)

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Datasupportingthe conclusions of this paper are included withinitand
its Supplementary Information. The processed CCLE data are available
atthe DepMap portal (http://www.depmap.org). Theraw WGS and WXS
celllines sequencing dataare available at Sequence Read Archive (SRA)
and European Genome-Phenome Archive (EGA) under access numbers
PRJNA523380 (ref.40) and EGADO0001001039 (ref. 81). The raw mass
spectrometry proteomic dataare publicly available without restrictions
atthe ProteomeXchange viathe PRIDE partner repository under acces-
sionnumbers PXD030304 (ref. 41) for cell lines, PXD030983 (ref. 37) for
mouse strain C57BL/6 Nand PXD010154 (ref. 38) for alternative protease
and fragmentation analyses. The proteomic data for the five prostate

tumor samples are freely available at UCSD’s MassIVE database under
accession number MSV000081552 (ref.36), whereas their raw WGS and
RNA-seq dataareavailable at EGA under accession EGASO0001000900
(ref. 35). Proteomic data for the eight ccRCC tumor samples are freely
available at PDCunder accession number PDC000411 (ref. 43), whereas
the genomic and transcriptomic data are available at Genomic Data
Commons (GDC, Project: CPTAC-3, Primary Site: Kidney) with dbGaP
accession number phs001287, generated by the National Cancer Insti-
tute’s Clinical Proteomic Tumor Analysis Consortium (CPTAC).

Code availability

moPepGen is publicly available at https://github.com/uclahs-cds/
package-moPepGen (ref. 82). Data processing, analysis and visualiza-
tionscripts are available upon request.
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Extended Data Fig.1|See next page for caption.
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Extended DataFig.1| Core graph algorithm of moPepGen. The graph algorithm  sequence length of each node is amultiple of three. ¢) Peptide variant graph

of moPepGen implements the following key steps: a) A transcript variant graph (PVG) is generated by translating the sequence of each node of the TVG. d)
(TVG) is generated from the transcript sequence with all associated variants. All Peptide cleavage graphis generated from the PVG in such away that each nodeis
three reading frames are explicitly generated to efficiently handle frameshift an enzymatically cleaved peptide.

variants. b) Variant bubbles of the TVG are aligned and expanded to ensure the
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Extended Data Fig. 2 | Differential handling of noncoding transcripts,
subgraphs and circular RNAs. a) For coding transcripts, variants are only
incorporated into the effective reading frames. For transcripts that are canonically
annotated as noncoding, variants are added to all three reading frames to perform
comprehensive three-frame translation. b) Subgraphs are created for variant

types thatinvolve the insertion of large segments of the genome, which can carry
additional variants. ¢) The graph of a circular RNA is extended four times to capture

[TeeAg|[TGTGTACTAT] — sTVYY

all possible peptides that span the back-splicing junction site in all three reading
frames. In the bottom panel, the nodes in magenta harbor the variant 130-A/T and
thenodesinyellow harbor 165-A/AC. d) lllustration of a circRNA molecule with a
novel open reading frame. Each translation across the back-splicing site may shift
the reading frame. If no stop codonis encountered, the original reading frame is
restored after the fourth crossing.
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Extended Data Fig. 3| moPepGen demonstrates comprehensive results and
deliberate biological assumptions. a) and b) Non-canonical peptide generation
results from benchmarking of moPepGen, pyQUILTS and customProDBJ using
only point mutations (SNVs) and smallinsertions and deletions (indels; a),

and with inputs from point mutations, indels, RNA editing, transcript fusion,
alternative splicing and circular RNAs (circRNAs). b). Top boxplot shows the
number of peptides in each set intersection and right barplot shows the total
number of non-canonical peptides generated by each algorithmin five primary
prostate tumour samples (n = 5). ¢) Assumptions made by moPepGen for
handling edge cases that differ from other algorithms. Start-codon-altering and
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splice-site-altering variants are omitted due to the uncertainty of the resulting
translation and splicing outcomes. Transcripts with unknown stop codons do not
have trailing peptide outputs because of the uncertainty of the trailing enzymatic
cleavage site. Stop-codon-altering variants do not result in translation beyond
the transcript end, adhering to central dogma. UTR: untranslated region. d) Non-
canonical database search results from benchmarking of moPepGen, pyQUILTS
and customProDBJ using point mutations, indels, RNA editing, transcript fusion,
alternative splicing and circRNAs (n = 5). Allboxplots show the first quartile,
median, to the third quartile, with whiskers extending to furthest points within
1.5x theinterquartile range.
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Extended Data Fig. 4 | Detection of novel open reading frame peptides across
proteases. a) Peptide length distributions after in silico digestion with seven
enzymes, as indicated by color, of the canonical human proteome and three-frame
translated noncoding transcript open reading frames (ORFs). The dotted lines
indicate the 7-35 amino acids peptide length range commonly used for database
search.b) Noncoding peptide detection across ten enzyme-fragmentation
methodsinone deeply fractionated human tonsil sample. The top barplot shows
the number of peptidesin each setintersection and the right barplot shows the
total number of non-canonical peptides from noncoding ORFs detected in each
enzyme-fragmentation method, asindicated by covariate color. ¢) Optimal
combinations of one to ten enzyme-fragmentation methods for maximizing the
number of transcripts detected from the canonical proteome, or the number of
ORFs detected from noncoding transcripts. The bottom covariate indicates the

optimal combinations of enzyme-fragmentation methods from combinations

of oneto ten, with color indicating enzyme-fragmentation method. d)

Noncoding transcript ORFs with peptides detected across four or more enzyme-
fragmentation methods, with recurrence count shownin the right barplot. The
color of the heatmap indicates the number of peptides detected per ORF per
enzyme-fragmentation method. e) Example ORFs with coverage by multiple
proteases are shown, with peptides tiled according to detection in each enzyme-
fragmentation method, asindicated by covariate color. Representative fragment
ion mass spectra of peptide-spectrum matches are shown, with theoretical spectra
atthe bottom and fragmention matches colored (blue: b-ions, red: y-ionsin). HCD:
higher-energy collisional dissociation; CID: collision-induced dissociation; ETD:
electron-transfer dissociation; m/z: mass-to-charge ratio.
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Extended Data Fig. 5| Germline non-canonical peptide detectionin mouse
strain C57BL/6 N.a) Comparison of canonical and custom database sizes

for the C57NL/6 N mouse. Germline database includes single-nucleotide
polymorphisms (SNPs) and smallinsertions and deletions. b) Number of non-
canonical peptides detected from each database in each tissue (one sample per
tissue), with database indicated by color. ¢) Comparison of a variant peptide-

spectrum match (PSM) spectra (top, both) with the theoretical spectra of the

canonical peptide counterpart (left, bottom) as well as the theoretical spectra
of the variant peptide harboring a SNP (right, bottom). Fragment ion matches
are colored, with b-ionsin blue and y-ions in red. m/z: mass-to-charge ratio.

d) Noncoding transcripts with open reading frames yielding two or more non-
canonical peptides recurrently detected across tissues, with color indicating the
number of peptides detected in each tissue.
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Extended Data Fig. 6 | Proteogenomic investigation of the Cancer Cell Line
Encyclopedia. a) Number of non-canonical peptides generated per cell line,
with color indicating peptide source. Bottom covariate indicates tissue of origin.
b) and ¢) Number of variant peptides per cell line (n =376) grouped by number
of variants in combination in coding (b) and noncoding (c) transcripts. Lines
indicate group median. d) Number of non-canonical peptides detected per cell
line, colored by peptide source. Bottom covariate indicates tissue of origin.

e) Per cellline, number of intragenic coding mutations (by VEP), mutations
predicted to produce detectable non-canonical peptides and mutations
detected through proteomics. f) Per cell line, number of transcript fusions,
those predicted to produce detectable non-canonical peptides and fusions with
detected peptide products. Color indicates tissue of origin. g) Fusion transcripts
(upstream-downstream gene symbol) with detected peptides, with number

of peptides shown across cell lines. Bar color indicates whether the upstream

fusion transcript was coding or noncoding. Right covariate indicates tissue of
origin. h) Fragmention mass spectrum from peptide-spectrum match (PSM) of
the non-canonical peptide at the junction of the FLNB-SLMAP fusion transcript.
The peptide theoretical spectrumis shown at the bottom and fragmention
matches are colored (blue: b-ions, red: y-ions). i) Comparison of mass spectrum
(top, both) from PSM of a non-canonical peptide with a single-nucleotide variant
against Prosit-predicted MS2 mass spectra based on the canonical counterpart
peptide sequence (left, bottom) and the detected variant peptide sequence
(right, bottom). Fragment ion matches are colored, with b-ions in blue and
y-ionsinred.j) Cross-correlation (Xcorr) distribution of coding variant peptides
PSMs against Prosit-predicted fragment mass spectra (solid lines, color indicate
charge), in comparison with Xcorr of control canonical PSMs against Prosit-
predicted mass spectra (dotted lines). m/z: mass-to-charge ratio.
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Extended Data Fig. 7| Functional investigation of non-canonical peptide
detectionin Cancer Cell Line Encyclopedia. a) Gene effect CERES scores for
genes with detected non-canonical peptides (orange), detected canonical
peptides only (pink) and no detected peptides (gray). A lower CERES score
indicates higher gene dependency. Cell lines were selected based on the
detection of non-canonical peptides in more than 10 genes. P-values were
calculated using a two-sided Mann-Whitney U-test. The red vertical line indicates
« =0.05. The bottom panel represents data pooled across all genes and cell
lines. The number of genes per group per cell line and Mann-Whitney U-test
results are provided in Supplementary Table 9. b) Gene effect CERES score and
¢) mRNA abundance of KRAS in cell lines with only canonical peptides detected

compared to those with detected non-canonical peptides (n =290 and 12,
respectively). P-values were calculated using a two-sided Mann-Whitney U-test.
TPM: Transcript per million. d) Number of putative neoantigens predicted based
ondetected non-canonical peptidesin cell lines with more than two neoantigens.
The colorindicates cell line tissue of origin. e) Recurrent neoantigens observed
across multiple cell lines, along with their associated gene, variant, HLA genotype
and the full peptide sequence as detected by trypsin-digested whole cell lysate
mass spectrometry. The color in the left heatmap represents neoantigen binding
affinity. Right covariate indicates tissue of origin. All boxplots show the first
quartile, median, to the third quartile, with whiskers extending to furthest points
within 1.5x the interquartile range.
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Extended Data Fig. 8| Detection of non-canonical peptides from DIA
proteomics. a) Number of variant peptides from different variant combinations
generated using genomic and transcriptomic data from eight clear cell renal cell
carcinoma (ccRCC) tumors (n = 8), grouped by the number of variant sources

in combination. gVariant: germline single-nucleotide polymorphism and
insertion/deletions (indels); sVariant: somatic single-nucleotide variant and
indels; AltSplice: alternative splicing. b) Number of detected variant peptides

in the data-independent acquisition (DIA) proteome of eight ccRCC tumors.
c-e) Detection of non-canonical peptides harboring germline single-nucleotide

polymorphisms (c), alternative splicing (d) and RNA editing sites (e) across genes.
Heatmap colorsindicate the number of peptides detected per gene per sample.
Thebarplotindicates recurrence across samples. f) lllustration of non-canonical
peptides derived from the canonical sequence FSGSNSGNTATLTISR in gene
IGLV3-21 caused by RNA editing events. g-i) Extracted ion chromatograms of the
canonical peptide (g) and non-canonical peptides derived from /GLV3-21 caused
by RNA editing events: chr22:22713097 G-to-C (h) and chr22:22713111 A-to-G (i).
Allboxplots show the first quartile, median, to the third quartile, with whiskers
extending to furthest points within 1.5x the interquartile range.
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Extended Data Fig. 9 | Detection of non-canonical peptides from genomic
variants, alternative splicing and circular RNAs. a) Number of detected non-
canonical peptidesin five primary prostate tumour samples per database tier
(colored by database). b) Peptides as the result of acombination of two variants,
withvariant type indicated in left covariate and gene on the right. The heatmap
shows presence of peptide across samples. c¢-f) Non-canonical peptide detection
results across genes, with color of heatmap representing the number of peptides
detected per gene per sample. The barplot indicates recurrence across samples,
andwhen colored indicates variant type associated with the gene entry. The
Variant database includes non-canonical peptides from coding transcripts with
single-nucleotide polymorphisms (SNPs), single-nucleotide variants (SNVs),
smallinsertion and deletion (indels), RNA editing, alternative splicing (Alt

Splice) or transcript fusion (c). Noncoding database includes all peptides from
noncoding transcript three-frame translation open reading frames (d) and
noncoding peptides with any variants are included in the Noncoding Variant
database (e). The Circular RNA database includes all peptides representing
circular RNA open reading frames (ORFs) with or without other variants (f).
The bottom covariate indicates prostate cancer sample. g) Mass spectrum
from peptide-spectrum match of a non-canonical peptide spanning the back-
splicing junction between exon 29 and exon 24 of MYH10, reflective of circular
RNA translation. The peptide theoretical spectrumis shown at the bottom and
fragmention matches are colored (blue: b-ions, red: y-ions in). m/z: mass-to-
chargeratio.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

/a | Confirmed

>

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
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Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection | No software was used to download the data used in this publication.

Data analysis * moPepGen is available on GitHub: https://github.com/uclahs-cds/package-moPepGen and PyPI: https://pypi.org/project/mopepgen
(licensed under GPL-2.0)
» The non-canonical peptide calling pipeline is available on GitHub: https://github.com/uclahs-cds/pipeline-call-NonCanonicalPeptide
» The DNA processing metapipeline is available on GitHub: https://github.com/uclahs-cds/metapipeline-DNA and includes the following
software: BWA-MEM?2 (v2.2.1), Picard Tools (v2.27.4), GATK (v4.2.5.0 and v4.2.4.1), SAMtools (v1.15.1), MuTect2 (from GATK v4.5.0.0),
VCFtools (v0.1.16), BCFtools (v1.9-1) and VEP (v104)
* RNA-seq data were processed using: STAR (v2.7.10b), SAMtools (v1.15.1), STAR-Fusion (v1.9.1), rMATS (v4.1.1), REDItools2 (v1.0.0) and
CIRCexplorer2 (v2.3.8)
* Proteomics data were processed using: ProteoWizard MSConvert (3.0.21258), Comet (v2019.01r5), MSFragger (v3.3), X|Tandem
(v2015.12.15), OpenMS (v3.0.0-1f903c0), DIA-NN (v1.8.1) and Novor (app.novor.cloud)
* Neoantigens were predicted using OptiType (v1.3.5) and MHCflurry (v2.0.6)
* PSM validation were done using pyOpenMS (v3.1.0) and Oktoberfest (v0.6.2)
 Data analysis was performed using: R (v4.0.3), BoutrosLab.plotting.general (v6.0.2), data.table (v1.14.0), Python (v3.8.10)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The processed CCLE data are available at the DepMap portal (http://www.depmap.org). The raw WGS and WXS cell lines sequencing data are available at Sequence
Read Archive (SRA) and European Genome-Phenome Archive (EGA) under access number PRINA52338041 and EGAD0000100103990. The raw mass spectrometry
proteomic data are publicly available without restrictions at the ProteomeXchange via the PRIDE partner repository under accession number PXD03030442 for cell
lines, PXD03098337 for mouse strain C57BL/6N, and PXD01015491 for alternative protease and fragmentation analyses. The proteomic data for the five prostate
tumour samples are freely available at UCSD’s MassIVE database under accession number MSV00008155236, whereas their raw WGS and RNA-seq data are
available at EGA under accession EGASO000100090035. Proteomic data for the eight kidney tumour samples are freely available at Proteomic Data Commons (PDC)
under accession number PDCO0041144, whereas the genomic and transcriptomic data are available at Genomic Data Commons (GDC, Project: CPTAC-3, Primary
Site: Kidney) with dbGaP accession number phs001287, generated by the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (CPTAC).

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender This study did not involve human participants.

Reporting on race, ethnicity, or  This study did not involve human participants.
other socially relevant

groupings

Population characteristics This study did not involve human participants.
Recruitment This study did not involve human participants.
Ethics oversight This study did not involve human participants.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The genomic and proteomic data for 375 cell lines were obtained from the Cancer Cell Line Encyclopedia project (Nusinow et al., 2020, Cell).
Proteomic data for the three mouse tissue samples were obtained from Giansanti et al., 2022, Nat Methods. Proteomic data of a tonsil tissue
sample, analyzed using 10 enzyme-fragmentation methods were accquired from Wang et al., 2019, Mol Syst Biol. The genomic and proteomic
data for the 5 primary prostate tumours were obtained from Sinha et al., 2019, Cancer Cell. This study did not explicitly derive experimental
groups, therefor the sample sizes were not determined based on statistical calculation.

Data exclusions | Data were included based on their accessibility. The 375 cancer cell lines were selected based on the availability of both proteomic and
genomic data. The three mouse tissues (liver, uterus, and cerebellum) were chosen to cover the greatest tissue variability. Prostate tumors
were selected because they have genomic and transcriptomic data available, as well as proteomic data from two injection replicates.

Replication This study did not generate new experimental data from patients, samples, or cell lines. All analyses were performed using existing datasets
and based on biological replicates, defined as independent patients, tumors, or cell lines, as appropriate to each analysis.

Randomization  As noted previously, this study did not explicitly derive experimental groups, and as such, no randomization was implemented during data
analysis.

Blinding Blinding was not employed during data analysis because this study involved secondary analysis of publicly available, pre-existing datasets. The
goal of the analyses was to demonstrate the capability of moPepGen in detecting non-canonical peptides, and no conclusions were drawn
from comparisons between predefined groups of samples.
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