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Volatile organic compounds (VOCs), classified as secondary or specialized metabolites,
are essential for plant health [1]. Plant volatiles are intricate, multi-faceted signals frequently
utilized by pollinators alongside other cues, such as color. Although the entire plant, from
roots to seeds to stems to leaves and fruits, produces VOCs, the flowers release the most
significant quantity and number of these compounds [2–4]. Scent is a powerful tool
for floral visitors. They can use it to gauge the quantity of reward in flowers, identify
which flowers to visit, or send signals chemically similar to those pollinating insects
employed in other environments [5,6]. Plants emit VOCs subterraneously to sense their
surrounding community, strategize for or evade competition with adjoining flora, and serve
as alert signals to proximate plants under specific circumstances. Furthermore, climate
change (e.g., increased temperatures, drought stress, raised CO2, and O3) has significantly
affected plant quality and the interactions between plants and their environment, both
subterranean and aerial. There is still much mystery surrounding the functions of these
compounds in plant interactions, biotic stress, and abiotic stress. Several reviews and
research articles in this Special Issue focused on the function of plant volatiles in different
plant and human lifecycles.

Herein, Abbas et al. [7] emphasize the significance of aroma compounds in horticulture
crops. Floral and fruit emissions of aromas attract pollinators and humans who partake in
the consumption of the fruit. Horticultural crops are primarily selected according to human
preferences, making it essential to determine VOCs that align with sensory preferences to
satisfy consumer demands. The authors look into the vital role played by fragrance volatile
compounds in shaping the flavor and aroma profiles of horticultural crops while also
discussing the industrial applications of plant-derived volatile terpenoids, especially in the
food and beverage, pharmaceutical, cosmetic, and biofuel sectors. The discussion includes
the methodological obstacles and challenges that hinder the progression from gene selection
to host organisms and from laboratories to practical applications, as well as the possibilities
for genetic engineering to enhance the commercial production of volatile terpenoids.

In another study, Afzal et al. [8] highlight the implications of heavy metal contami-
nation on soil nitrate alteration and rice volatile organic compounds across various water
management practices. The authors review current research concerning the negative im-
pacts of cadmium on soil processes associated with the nitrogen cycle and the quality of rice,
specifically its aroma, under various water management practices. The authors reported
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that cadmium reduces nitrification and denitrification processes under continuous flooding
(CF) and alternate wetting and drying (AWD) conditions. The research indicates that AWD
practices should be avoided in fields contaminated with Cd to minimize deposition and
maintain excellent rice quality. The authors emphasize that a viable option is to utilize
agricultural biotechnology and rhizospheric development to mitigate the translocation of
heavy metals from the soil to the edible parts of plants.

Liu et al. [9] experimented on Lilium ‘Siberia’ and elucidated the light modulation of
LoCOP1 and its function in floral scent production. The authors isolated the COP1 gene
(LoCOP1) from the petals of Lilium ‘Siberia’ and examined its function, discovering that this
protein exhibited the highest similarity to the COP1 of Apostasia shenzhenica. Furthermore,
it was identified as a crucial nuclear factor that negatively regulates the generation and
release of floral fragrance via virus-induced gene silencing (VIGS) application. The Y2H,
β-galactosidase, and BiFC experiments demonstrated that LoCOP1 interacts with LoMYB1
and LoMYB3. The results showed that to regulate its breakdown in the dark using the 26S
proteasome, LoCOP1 may ubiquitinate LoMYBs.

Yue et al. [10] identified and characterized twelve SABATH methyltransferase genes
within the genome of Hedychium coronarium, elucidating their function in the biosynthesis
of floral methyl jasmonate. Methyl jasmonate (MeJA) has been identified as a volatile
compound in the blooming flowers of H. coronarium. HcSABATH expression analysis
revealed that HcJMT1 arose as the primary candidate gene for the biosynthesis of floral
MeJA. In vitro enzyme assays demonstrated that HcJMT1 can catalyze the conversion of
jasmonic acid to MeJA. The labella and lateral petals, where MeJA emission occurs, had
the highest HcJMT1 gene expression. The two MeJA isomers, the HcJMT1 protein’s main
isomers, were released post-anthesis when the HcJMT1 expression was high.

Bao et al. [11] identified an OsbZIP60-like transcription factor, which modulates the
OsP5CS1 gene and the biosynthesis of 2-acetyl-1-pyrroline (2-AP) in aromatic rice. 2-AP
is the primary volatile compound responsible for the aroma of fragrant rice. The authors
constructed Osp5cs1 knockout mutant lines and OsP5CS1 over-expression lines through
the genetic transformation of the Indica rice cultivar ‘Zhonghua11’, which involves the
knockout of OsBADH2 to induce fragrance in aromatic rice. The OsbZIP60-like transcrip-
tion factor positively regulates OsP5CS1 (key gene in the 2-AP biosynthesis pathway). In
short, the OsbZIP60-like transcription factor facilitated the accumulation of 2-AP.

A study conducted by Sheshukova et al. [12] demonstrated that the methanol-inducible
gene (MIG) 21 in Nicotiana benthamiana encodes a nucleolus-localized protein that enhances
viral intercellular transport and downregulates nuclear import. Gaseous methanol from
the damaged plant helps neighboring healthy plants resist bacterial pathogens, but it
promotes viral infections. Most methanol-inducible genes (MIGs) in N. benthamiana are
linked to plant defense and intercellular transport. The authors describe NbMIG21, which
possesses a nucleolus localization signal (NoLS). Colocalization studies using fibrillarin
and coilin, markers for the nucleolus and Cajal bodies, demonstrated that NbMIG21p
is localized within these subnuclear organelles. The enhanced expression of NbMIG21
promotes intercellular transit and replication of tobacco mosaic virus (TMV). The NbMIG21
promoter (PrMIG21) showed sensitivity to methanol, indicating that the accumulation of
NbMIG21 mRNA is induced at the transcriptional level.

Peng et al. [13] implemented bibliometric methods, analyzing data from the Web
of Science Core Collection from 1987 to 2022 to provide a numerical evaluation of the
published literature on the floral scent. This assessment includes an examination of annual
publication outputs, prominent research domains, temporal keyword trends, the geographic
distribution of studies, institutional affiliations, co-organizations, and pertinent authors.
A significant increase in floral aroma publications was observed, particularly in the fields
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of Food Science Technology, Plant Sciences, Chemistry, Agriculture, Biochemistry, and
Molecular Biology. These study tendencies indicate a shift from micro-level investigations
of individual pollination ecological activities of floral scent (FS) to a macro perspective
highlighting FS’s overall influence on biodiversity and ecosystem stability. This transition
encompasses evaluating the individual sensory characteristics of FS to a comprehensive
assessment of their contribution to food production, quality, and improvements in yield.

In short, this Special Issue aims to compile articles that emphasize the significance
of floral volatiles in plant longevity and human interactions. The manuscripts collated
within this Special Issue emphasize the significance of volatile compounds in attracting
pollinators, facilitating plant reproduction, influencing evolution, responding to internal
and environmental factors, and aiding in seed dispersal. We addressed the application of
contemporary analyzing computation approaches for the identification, characterization,
and functional validation of post-transcriptional regulators. Numerous researchers have
thoroughly examined the physiological, molecular, and biochemical signals related to plant
secondary metabolites.
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