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Comprehensive evaluation of the capacities
of microbial cell factories

Gi Bae Kim 1,2, Ha Rim Kim 1,2 & Sang Yup Lee 1,2,3,4,5,6

Systems metabolic engineering is facilitating the development of high-
performing microbial cell factories for producing chemicals and materials.
However, constructing an efficient microbial cell factory still requires explor-
ing and selecting various host strains, as well as identifying the best-suited
metabolic engineering strategies, which demand significant time, effort, and
costs. Here, we comprehensively evaluate the capacities of various microbial
cell factories and propose strategies for systems metabolic engineering steps,
including host strain selection, metabolic pathway reconstruction, and meta-
bolic flux optimization. We analyze the metabolic capacities of five repre-
sentative industrial microorganisms as cell factories for the production of 235
different bio-based chemicals and suggest themost suitable host strain for the
corresponding chemical production. To improve the innate metabolic capa-
city by constructing more efficient metabolic pathways, heterologous meta-
bolic reactions, and cofactor exchanges are systematically analyzed.
Additionally, we present metabolic engineering strategies, which include up-
and down-regulation target reactions, for the improved production of che-
micals. Altogether, this study will serve as a comprehensive resource for the
systems metabolic engineering of microorganisms in the bio-based produc-
tion of chemicals.

Systems metabolic engineering1,2, which integrates the strategies
and tools of synthetic biology, systems biology, and evolutionary
engineering with traditional metabolic engineering, allows more
efficient development of microorganisms for the sustainable pro-
duction of various chemicals, including bulk chemicals3–6, fine
chemicals7,8, fuels9–11, polymers12–14, and natural products15–19 from
renewable resources instead of fossil resources. Starting with pro-
ject design, systems metabolic engineering aims to optimize host
strain selection, metabolic pathway construction, and metabolic
fluxes, while considering fermentation and downstream
processes20. However, exploring the vast metabolic space, repre-
sented by the combinations of the metabolic networks of different

host strains and strain engineering strategies, still demands sig-
nificant time, effort, and costs.

Modelmicroorganisms such as Escherichia coli and Saccharomyces
cerevisiae have been the primaryworkhorses formetabolic engineering
due to the availability of themost abundant knowledge on their genetic
and metabolic characteristics and also the gene manipulation tools.
However, selecting a host strain requires consideration of the most
suitable metabolic characteristics for the production of a target che-
mical. These include the presence of a native biosynthetic pathway for
the target chemical, or the potential to produce it effectively when a
heterologous or new biosynthetic pathway is introduced, capacity to
produce the target chemical, the safety of the microorganism, and the
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environmental conditions in which the microorganism can thrive21.
Recent advancements in bioengineering tools, such as clustered reg-
ularly interspaced short palindromic repeats (CRISPR)22 and serine
recombinase-assisted genome engineering (SAGE)23, have enabled the
metabolic engineering of non-model organisms that naturally produce
target chemicals more amenable. Obviously, performing metabolic
engineering on a host strain that possesses the highest biosynthetic
capacity toward the target product is a promising strategy, as the strain
has a potential to more efficiently produce chemicals compared to the
other strains with lower biosynthetic capacity. The production perfor-
mance is defined by three keymetrics: titer (the amount of product per
volume), productivity (specific productivity, the rate of production per
unit of biomass, or volumetric productivity, the rate of production per
volume), and yield (the amount ormole of product per amount ormole
of consumed substrate)24. Among these key metrics, yield determines
the required raw material costs, significantly affecting the overall bio-
process costs. Thus, selecting a host strain with a biosynthetic pathway
that maximizes the yield of chemical production is crucial.

Genome-scale metabolic models (GEMs), which represent gene-
protein-reaction associations in organisms through mathematical
models, have been used to analyze the biosynthetic capacities and
engineering strategies for developing microbial cell factories20,25,26. For
example, gene knockout targets for the improved production of
L-valine in E. coli were identified at the systems level by performing
in silico knockout simulations for each gene in the strain, which would
otherwise require considerable time, effort, cost for real experiments27.
GEM-based approaches have not only identified gene targets for engi-
neering but also characterized strain variations28, constructed biosyn-
thetic pathways toward desired chemicals29,30, analyzed metabolic
resource allocations in host strains31, and predicted metabolic interac-
tions between microbial communities32. Although GEMs have been
utilized to optimize host strain selection, metabolic pathway con-
struction, and metabolic fluxes, a comprehensive exploration of the
processes at the systems level still demands significant effort.

In this study,we aim toprovide resources forhost strain selection,
metabolic pathway construction, and metabolic flux optimization. To
support host strain selection, we provide the metabolic capacities for
235 chemicals that have been produced, even if only minimally, in
representative industrialmicroorganisms by calculating themaximum
theoretical yield (YT), the maximum production of the target chemical
per given carbon source when resources are fully used for the target
chemical production, and maximum achievable yield (YA), the max-
imum production of the target chemical per given carbon source,
considering cell growth andmaintenance. For further improvement of
metabolic pathway reconstruction, we have also systematically ana-
lyzed the expansion of innatemetabolic capacity through the addition
of heterologous reactions and cofactor exchanges in native metabolic
reactions, and rewiring of innate metabolism to improve target che-
mical production. Furthermore, metabolic engineering strategies,
which include the target reactions to be up- and down-regulated, are
suggested for the improved production of chemicals. To demonstrate
the versatility and applicability of these resources, we selected various
products, including amino acids (L-lysine and L-glutamate) and orni-
thine used as nutritional supplements; precursors for biopolymers
(sebacic acid and putrescine); a bulk chemical (propan-1-ol); and a key
precursor for various natural products (mevalonic acid) as case stu-
dies. The resources presented in this study can also be employed for
analyzing the other 229 chemicals (SupplementaryData 1–23) and also
for other chemicals not described here using similar approaches.

Results
Selection of a suitable host strain having the high metabolic
capacity
Bacillus subtilis, Corynebacterium glutamicum, E. coli, Pseudomonas
putida, and S. cerevisiae are the five most frequently employed and

preferred microbial strains in industrial biomanufacturing and aca-
demic research. Here, we analyzed the metabolic capacities - the
potential of metabolic networks to produce chemicals - of five repre-
sentative industrial host strains for the production of 235 chemicals
(Supplementary Figs. 1–7). To calculate metabolic capacity, two types
of yields of chemical production are used: maximum theoretical yield
(YT) and maximum achievable yield (YA). Ignoring metabolic fluxes
toward cell growth and maintenance makes the YT to be determined
solely by the stoichiometry of reactions in the given metabolic net-
work. However, unlike chemical processes, bioprocesses require
resources and energy for the generation and maintenance of cells,
which serve as biocatalysts, making it impossible to achieve the YT. To
more realistically describe the metabolic capacity of strains for che-
mical production, we calculated YA, which accounts for non-growth-
associated maintenance energy (NGAM) and setting the lower bound
of the specific growth rate to 10%of themaximumbiomass production
rate to ensure minimum growth requirements, as suggested by Monk
et al. (Supplementary Note 1)33.

We calculated both YT and YA for 235 chemicals when produced in
fivemicroorganisms using nine key carbon sources (i.e., L-arabinose, D-
fructose, D-galactose, D-glucose, D-xylose, glycerol, sucrose, formate,
and methanol) under different aeration conditions (aerobic, micro-
aerobic, and anaerobic conditions) (Supplementary Data 1–5). To cal-
culate the yields of chemical production, we constructed GEMs that
incorporate the biosynthetic pathways for each chemical, using
metabolic reactions that have been previously reported to function
properly for target chemical production. For the construction of this
GEM, we selected 235 target chemicals from a metabolic map pre-
viously compiled34. We organized all metabolic reactions associated
with these target chemicals into mass- and charge-balanced equations
using the Rhea database35. For reactions not found in the Rhea data-
base, we manually constructed the corresponding equations. Overall,
we developed 272 metabolic pathways leading to the biosynthesis of
235 chemicals, includingmultiple pathways for a single target chemical
when available. We constructed a separate GEM for each chemical
biosynthesis pathway in each host, resulting in a total of 1360 GEMs.
Out of these, 1092 GEMs were supplemented with heterologous
reactions not present in the host strain’s GEM to establish functional
biosynthetic pathways. The remaining 268 GEMs utilized native bio-
synthetic pathways for the production of the target chemicals. For
more than 80% of the target chemicals, fewer than five heterologous
reactionswere required to construct biosynthetic pathways in the host
strains, with percentages of 88.24%, 84.56%, 88.97%, 85.29%, and
90.81% for B. subtilis, C. glutamicum, E. coli, P. putida, and S. cerevisiae,
respectively (Supplementary Fig. 8). These results indicate that the
majority of bio-based chemicals can be synthesized with minimal
expansion of metabolic networks. Furthermore, the length of biosyn-
thetic pathways exhibited a weak negative correlation with maximum
yields (Spearman correlations of −0.3005 and –0.3032 for YT and YA

under aerobic conditions with D-glucose as the carbon source,
respectively; p-values of 8.991e-30 and 2.601e-30 for YT and YA,
respectively. n = 1360 for both cases), suggesting thatmaximum yields
should be analyzed at the systems level for more comprehensive
insights.

Based on metabolic capacities, it is possible to identify the most
potent strain for producing a specific chemical. To explore the
variability in host performance across chemicals, we performed
hierarchical clustering of host ranks based on maximum yields
(Supplementary Figs. 9 and 10). Under aerobic conditions with D-
glucose as the carbon source, the clustering shows that while most
chemicals achieve their highest yields in S. cerevisiae, a few chemicals
display clear host-specific superiority (e.g., pimelic acid in B. subtilis;
see Discussion for other selection criteria). Notably, these chemicals
do not group according to conventional biosynthetic pathways or
chemical categories, highlighting the necessity of evaluating each
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chemical individually rather than applying a universal rule. For
instance, the metabolic capacities of host strains for producing
L-lysine, an essential amino acid used in animal feed and as a human
nutritional supplement, were compared under aerobic conditions
with D-glucose as the sole carbon source. Among the strains, S. cere-
visiae showed the highest yield (YT) of 0.8571mol/mol D-glucose,
followed by B. subtilis (0.8214mol/mol D-glucose), C. glutamicum
(0.8098mol/mol D-glucose), E. coli (0.7985mol/mol D-glucose), and
P. putida (0.7680mol/mol D-glucose). Except for S. cerevisiae, which
synthesizes L-lysine via the L-2-aminoadipate pathway, the other
strains utilize the diaminopimelate pathway, albeit with differing
metabolic capacities (Supplementary Fig. 11). While metabolic capa-
cities are crucial for selecting host strains for chemical production,
other factors, such as actual in vivometabolic fluxes toward the target
chemical and chemical tolerance, play important roles in industrial
applications. For example, C. glutamicum is widely utilized as an
industrial strain for L-glutamate production due to its high metabolic
fluxes in the L-glutamate biosynthetic pathway, capability for high cell
density cultivation, and the GRAS status of its products. However,
C. glutamicum has lower YT and YA under aerobic conditions with D-
glucose as the sole carbon source (1.0000mol/mol D-glucose and
0.9290mol/mol D-glucose, respectively) compared to the other four
strains (B. subtilis: 1.1729mol/mol D-glucose, 0.9225mol/mol D-glu-
cose; E. coli: 1.1917mol/mol D-glucose, 1.0652mol/mol D-glucose;
P. putida: 1.1915mol/mol D-glucose, 1.0708mol/mol D-glucose; S. cer-
evisiae: 1.2000mol/mol D-glucose, 1.0868mol/mol D-glucose). It
should be noted that maximum yields represent upper-bound esti-
mates based on in silico modeling and do not capture factors such as
enzyme kinetics, product tolerance, and GRAS status of strains/pro-
ducts. Thus, our resource is intended to serve as an initial screening
tool that provides a quantitative basis for narrowing down candidate
strains. Although C. glutamicum is successfully used in industry,
strains with higher maximum yields suggest a higher capacity for
chemical production. Therefore, if strains with higher maximum
yields are fully explored and engineered, they could potentially be
developed into even more efficient cell factories. This also highlights
that optimizing metabolic fluxes, a key objective of metabolic engi-
neering, remains crucial for strain development. To further elucidate
host-specific differences in maximum yields, we calculated the coef-
ficient of variation (CV) for both YT and YA across the host strains for
each target chemical. Our analysis shows that the mean CV for YT is
0.3684, whereas for YA it is 0.5172. A one-sided Wilcoxon signed-rank
test confirmed that theCV for YA is significantly higher than that for YT

(p-value of 0.000, n = 6292), indicating that YA captures additional
host strain-specific variability. These results suggest that YA provides
more discriminatory power for identifying hosts with a higher latent
capacity for chemical production, which is not evident from YT alone.
Importantly, even small differences in maximum yield can result in
meaningful improvements in large-scale production, emphasizing the
value of these metrics in guiding host selection for metabolic
engineering.

The emission of greenhouse gases accelerates global warming,
spurring the development of technologies to reduce one-carbon gases
(e.g., carbon dioxide, carbonmonoxide, and methane). Consequently,
one-carbon compounds have emerged as promising carbon sources
for chemical production. Although the development of microbial cell
factories for producing value-added chemicals exclusively from one-
carbon compounds is still in its early stages, we also analyzed the
potential to convert one-carbon compounds (i.e., methanol, carbon
dioxide, and formate) into chemicals, aiming to provide a basis for
future research. For instance, in the production of sebacic acid, a
precursor of nylon-6,10, using methanol, the YT and YA were higher in
E. coli (0.1091 and 0.0969mol/mol methanol) and P. putida (0.1082
and 0.0970mol/mol methanol), followed by S. cerevisiae (0.1000 and
0.0900mol/mol methanol), B. subtilis (0.0944 and 0.0778mol/mol

methanol), and C. glutamicum (0.0667 and 0.0600mol/mol metha-
nol) when methanol was used as the sole carbon source through the
ribulose monophosphate (RuMP) cycle. Maximum yields varied
depending on the one-carbon compounds and their assimilation
pathways. In E. coli, when using carbon dioxide as the carbon source
and formate as both a carbon source and reducing power, a strain
utilizing the reductive glycine cleavage (rGly) pathway showed higher
maximum yields (YT and YA of 0.0321mol/mol formate and
0.0270mol/mol formate, respectively) than a strain using the Calvin-
Benson-Bassham (CBB) cycle (YT and YA of 0.0243mol/mol formate
and 0.0204mol/mol formate, respectively) (Fig. 1). Methanol exhibits
a more negative standard enthalpy of combustion (−638.2 kJ/mol)
compared to carbon dioxide (0 kJ/mol) and formate (−211.5 kJ/mol)36.
This lower enthalpy of combustion indicates a higher intrinsic energy
content, which provides increased availability of reducing power and
ATP during metabolism. As a result, strains employing the RuMP cycle
achieve highermaximum yields for sebacic acid production compared
to those using theCBB cycle and the rGly pathway. Taking into account
the toxicity of intermediate metabolites, the catalytic efficiency of
enzymes in the one-carbon assimilation pathway, and other economic
factors including storage and transport costs of the sources, these
maximum yields of each pathway can help identify the most viable
assimilation pathway and carbon sources.

Overall, this comprehensive analysis of metabolic capacities for
bio-based chemical production highlights which microbial cell fac-
tories offer the most efficient biosynthetic pathways under targeted
bioprocess conditions, providing a valuable resource for systems
metabolic engineering.

Improving the innate metabolic capacity for chemical
production
Metabolic engineering enhances the chemical production abilities of
microbial cell factories by optimizing cellular characteristics within
their metabolic capacity or by improving their innate metabolic
capacity37. We systematically analyzed metabolic reactions expected
to improve the metabolic capacity of a host strain for target chemical
production. To improve the innate metabolic capacity of a host strain,
we performed two approaches: expanding the native metabolic net-
work by introducing heterologous reactions and replacing cofactors
used in the native metabolic network to non-native cofactors.

To expand the native metabolic network, we explored hetero-
logous metabolic reactions that could build more efficient biosyn-
thetic pathways when coordinated with native metabolic reactions.
These heterologous reactions were collected by constructing a uni-
versal model, an assembly of all metabolic reactions. The universal
model was curated from the universal model provided by the BiGG
database38 and contains 3814 metabolites and 6846 metabolic reac-
tions.We identified yield-improving heterologous reactions if the YT of
a target chemical was improved by at least 1% when these reactions
were added to the GEM of a production strain. The simulation was
performed for all 1360 constructed GEMs (representing 1360 different
microorganisms), limiting the number of added heterologous reac-
tions to three. We also provide the source code for the simulation to
analyze more diverse conditions of interest to researchers.

The simulation identified candidate reactions that resulted in
carbon- or energy-efficient biosynthetic pathways for the chemicals.
For example, phosphoketolase, an enzyme that converts xylulose
5-phosphate (or fructose 5-phosphate) into acetyl phosphate and
glyceraldehyde 3-phosphate (or D-erythrose 4-phosphate), was most
frequently predicted to improve YT of chemicals across host strains.
This enzyme facilitates a non-oxidative glycolysis pathway that con-
serves all carbons from the consumed sugar to acetyl-CoA (Fig. 2a). It
has been demonstrated that this non-oxidative glycolysis pathway
enhances carbon assimilation and improves the innate metabolic
capacity of E. coli for acetyl-CoA derived chemicals including acetate39
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and mevalonic acid production40, as predicted in this study. While
several heterologous reactions demonstrated conserved improve-
ments inmaximumyields across host strains, hierarchical clustering of
the heterologous reactions showed that the sets of target reactions
differ among host strains (Supplementary Fig. 12). For instance,meso-
diaminopimelate dehydrogenase was commonly predicted for
L-lysine-derived chemicals (i.e., 7-hydroxyheptanoic acid, pimelic acid,
cadaverine, L-2-ammoniohexano-6-lactam, 3,6-diammoniohexanoate,
L-lysine, glutaric acid, 5-oxopentanoaic acid, 5-ammoniopentanamide,
5-aminopentanoic acid, and valerolactam) under aerobic conditions
using D-glucose as the sole carbon source in E. coli (Supplementary
Fig. 13). It should be noted that detailed engineering strategies for
introducing heterologous reactions vary with the chemical of interest.
For example, ornithine transacetylase, which catalyzes the conversion
of L-glutamate to ornithine, was predicted to be a candidate enzyme
for improving YT of ornithine production in E. coli, increasing it from
0.9817mol/mol D-glucose to 1.0142mol/mol D-glucose under aerobic
conditions—a 3.31% increase. Ornithine transacetylase replaces two
enzymatic steps—specifically, N-acetylglutamate synthase and acet-
ylornithine deacetylase—in the ornithine biosynthetic pathway
(Fig. 2b). Flux-sum analysis, which calculates the sum of the incoming
and outgoing fluxes from a metabolite (see Methods), was performed
to identify major differences in flux distribution between the two
pathways (Fig. 2d). Acetate, acetyl phosphate, and acetyl-CoA showed
the largest decreases in flux-sum from the native ornithine biosynth-
esis pathway to the pathway with the introduced ornithine transace-
tylase. The native pathway requires acetyl-CoA for N-acetylglutamate
synthase and produces acetate via acetylornithine deacetylase. To
supply the required acetyl-CoA, the metabolic network must convert
acetate back to acetyl-CoA, consuming an ATP via acetate kinase. We
performed flux variability analysis (FVA) and confirmed that introdu-
cing ornithine transacetylase reduces the metabolic fluxes of acetate
kinase and phosphotransacetylase (Fig. 2d). This reduction decreases
the energy required to convert acetate into acetyl-CoA. The yield of
ornithine production in the pathway with the newly introduced

ornithine transacetylase is consequently increased (Fig. 2d). Although
C. glutamicum and S. cerevisiae natively possess ornithine transacety-
lase, experimental studies have demonstrated that further over-
expression of ornithine transacetylase-encoding genes (i.e., argJ)—
thereby reinforcing the flux through this pathway—can enhance orni-
thine production in microorganisms41,42.

Exploring heterologous reactions also suggests biosynthetic path-
ways that offer advantages in redox balance. For propan-1-ol production,
NADH-dependent homoserine dehydrogenase, homoserine deaminase,
andpyruvate carboxylasewerepredicted to improve theYT inE. coli from
0.7059mol/mol D-glucose to 1.0909mol/mol D-glucose under anaerobic
conditions—a 54.55% increase (Fig. 2c). The propan-1-ol biosynthetic
pathway without these heterologous reactions requires an ATP and two
NADPH from glyceraldehyde 3-phosphate. Furthermore, producing the
intermediate L-aspartate from L-glutamate and oxaloacetate indirectly
requires NADPH, necessitating a sufficient NADPH supply for propan-1-ol
production. The introduced enzymes reduce the dependency on the
NADPH pool. The native NADPH-dependent homoserine dehydrogenase
consumes one NADPH, while the introduced NADH-dependent homo-
serine dehydrogenase consumes an NADH to convert L-aspartate
4-semialdehyde to L-homoserine, thus reducing the total NADPH
requirement for propan-1-ol production. Additionally, homoserine dea-
minase bypasses the ATP-requiring native pathway to convert L-homo-
serine to 2-oxobutanoate, andpyruvate carboxylase converts pyruvate to
oxaloacetate, generating ATP in the reaction. Therefore, the hetero-
logous reactions make the metabolic network more ATP efficient, redir-
ecting metabolic fluxes from acetate and formate production pathways
to the pentose phosphate pathway (Supplementary Fig. 14). The addition
of heterologous reactions increased the flux-sum of metabolites in the
pentose phosphate pathway, demonstrating that the engineered meta-
bolic network can redirect metabolic fluxes toward the pentose phos-
phate pathway to meet the high NADPH demand rather than producing
ATP from fermentation pathways (Fig. 2e).

We further assessed how the number of added heterologous
reactions affects increases in maximum yields. Among the 784,774

Fig. 1 | Comparison of one-carbon assimilation pathways for sebacic acid pro-
duction. a Methanol assimilation via RuMP cycle for sebacic acid production.
b Formate and CO2 assimilation via CBB cycle for sebacic acid production.

c Formate and CO2 assimilation via rGly pathway for sebacic acid production.
Metabolic fluxes normalized by carbon source uptake rate to achieve YT and YA are
shown in blue and red boxes, respectively.
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heterologous reaction targets that improve YT of chemicals, 57,045
involved a single reaction, 191,901 involved two reactions, and
535,828 involved three reactions. The distribution of the percentage
increases in YT differed significantly across these groups (Kruskal-
Wallis H-test; p-value of 0.000, n = 784,774) with median increases of

6.296%, 8.800%, and 10.37% for the addition of one, two, and three
reactions, respectively (Supplementary Fig. 15). However, introducing
multiple heterologous reactions should be carefully optimized to
balance yield improvements with the potential metabolic burden on
the host.

Fig. 2 | Improved YT of chemical production via introduction of heterologous
reactions. aNon-oxidative glycolysis for improving YT of acetate production.bUse
of ornithine transacetylase for improving YT of ornithine production. c Use of
NADH-dependent homoserine dehydrogenase, homoserine deaminase, and pyr-
uvate carboxylase for improving YT of propan-1-ol production. Black arrows indi-
cate native metabolic pathways, while blue arrows indicate metabolic pathways
with heterologous reactions. Dotted arrows show bypassed reactions due to the
addition of heterologous reactions. The added heterologous reactions are shaded
in cyan. d Flux-sum differences of metabolites between the native pathway and the
pathway with introduced ornithine transacetylase for YT calculation. Metabolites

are sorted in descending order of flux-sum decrease. e Flux-sum differences of
metabolites between the native pathway and the pathway with introduced NADH-
dependent homoserine dehydrogenase, homoserine deaminase, and pyruvate
carboxylase for YT calculation. Metabolites are sorted in descending order of flux-
sum increase. Flux values inparentheses are the lower andupperbounds of the FVA
results whenmaximizing the target chemical production flux. FVA results for native
pathways and pathways with introduced heterologous reactions are in black and
blue, respectively. Abbreviations for metabolites and reactions are available in
Supplementary Data 24. Source data are provided as a Source Data file.
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Similarly, we identified metabolically efficient biosynthetic path-
ways for chemical production in industrial microorganisms (Supple-
mentary Data 6–10). However, the predicted heterologous reaction sets
should be carefully selected for validation experiments. Although all
metabolic reactions used in the analysis are mass- and charge-balanced,
flux balance analysis (FBA) often fails to exclude thermodynamically
infeasible solutions due to insufficient knowledge of the reaction
directions. To address this issue, we employed loopless FBA to reduce
thermodynamically infeasible solutions43. Thermodynamics-based FBA,
which utilizesmetabolite concentration ranges andGibbs free energy of
reactions to predict feasible flux profiles, could further reduce infeasible
solutions. However, incomplete knowledge of genome-scale metabo-
lome data and reaction thermodynamics hinders the application of such
thermodynamics-based network analysis. Additionally, the search space
for non-nativemetabolic reactions is constrained by the reactions in the
universalmodel. Therefore, further improvement of the universalmodel
in both quality and quantity is necessary for better construction of
metabolically efficient biosynthetic pathways. Community efforts to
elucidate genome-scale metabolome, kinetome, and other relevant
omics data will facilitate the construction of efficient biosynthetic
pathways for chemical production.

Next,we analyzedhow to improvemetabolic capacity bymodifying
the use of cofactors in native metabolic reactions. Addressing the bur-
den of cofactor usage is crucial for the biosynthesis of chemicals, par-
ticularly for those that are highly oxidized or reduced. To alleviate this
burden in biosynthetic pathways, metabolic engineering studies have
employed strategies such as changing enzymes44 or engineering the
cofactor specificities45. For example, GEMs have been utilized to identify
cofactors for exchange in constructing microbial cell factories46,47. Fur-
thermore, the development of computational designs48 or adaptive
evolution-based approaches49 for altering enzyme specificity makes
cofactor swapping a more viable strategy for metabolic engineering. To
propose potential strategies for improving metabolic capacity through
changes in cofactor usage inmetabolic reactions, we analyzed the effect
of cofactor exchanges in the 1360 constructed GEMs to improve the YT
of target chemicals.Metabolic reactions involvingNADPHorNADHwere
considered candidates for cofactor exchange. Cofactor exchanges were
identified if the YT of the target chemical improved when NADP and
NADPH in the candidate reactions were exchanged to NAD and NADH,
or vice versa (Supplementary Data 11–13).

For example, under aerobic conditions using D-glucose as the sole
carbon source in E. coli, 80.6% (29/36) of the biosynthetic pathways for
chemicals derived from acetyl-CoA showed improved YT’s when the
cofactor (NADH) of the glyceraldehyde 3-phosphate dehydrogenase was
exchanged for NADPH. This cofactor exchange enables the metabolic
network to produce NADPH from glycolysis, reducing the high demand
for NADPH in the production of acetyl-CoA-derived fatty acids and iso-
prenoids.Mevalonicacid, akeyprecursor in themevalonatepathway that
produces isoprenoids, showed improved YT from 0.8000mol/mol D-
glucose to 0.8229mol/mol D-glucose when the cofactor (NAD) of the
glyceraldehyde 3-phosphate dehydrogenase was swapped for NADP.
IntroducingNADPH-producing reaction reducesmetabolicfluxes toward
NADP transdehydrogenase andNADHdehydrogenase, providingNADPH
required for 3-hydroxy-3-mehtylglutaryl-CoA reductase from the glycer-
aldehyde 3-phosphate dehydrogenase (Fig. 3a). Similarly, 61.2% (30/49)
of the 2-oxoglutarate-derived chemicals showed improved YTs when the
cofactor (NADPH) of the glutamate dehydrogenase was exchanged for
NADH, under aerobic conditions using D-glucose as the sole carbon
source. Putrescine, a four-carbon diamine used in manufacturing engi-
neering plastics, showed improved YT from0.9907mol/mol D-glucose to
1.0221mol/mol D-glucose when the cofactor (NADPH) of the glutamate
dehydrogenase was exchanged for NADH (Fig. 3b). Exchanging the
required NADPH for NADH in glutamate dehydrogenase allows the
metabolic network to provide cofactors from glycolysis, without
diverting additional metabolic fluxes toward NADPH-producing

pathways. Experimental studies have demonstrated that employing
enzymes with different cofactor specificities can substantially improve
chemical production. For example, engineering glyceraldehyde
3-phosphate dehydrogenase to favor NADP+ increased L-lysine produc-
tion in C. glutamicum50, and overexpression of an NADP+-dependent
glyceraldehyde 3-phosphate dehydrogenase gene enhanced
3-hydroxypropionic acidproduction inE. coli51. Furthermore, introducing
an NADH-dependent aspartate-semialdehyde dehydrogenase improved
L-homoserineproduction inE. coli52. Theseexperimentalfindings support
our simulation predictions on cofactor exchange strategies.

These cofactor preferences are largely conserved across different
carbon sources but exhibit distinct patterns under varying aeration
conditions (Supplementary Fig. 16). For instance, in E. coli under
aerobic conditions, the predicted cofactor exchange targets pre-
dominantly favor NADPH for isoprenoids (e.g., bisabolene, carotene,
farnesene, farnesol, farnesyl diphosphate, geraniol, geranyl dipho-
sphate, geranylgeraniol, geranylgeranyl diphosphate, limonene, myr-
cene, pinene, sabinene, and santalene) and for aromatic compounds
(e.g., 2-phenylethanol, 4-amino-L-phenylalanine, 4-aminocinnamic
acid, 4-aminophenyl ethylamine, 4-hydroxyphenyl acetaldehyde, 4-
hydroxyphenylacetate, and resveratrol). In contrast, under micro-
aerobic and anaerobic conditions, bothNADH- andNADPH-dependent
reactions are predicted with similar frequencies for these chemical
groups. These findings suggest that while the inherent cofactor
demands of biosynthetic pathways remain relatively consistent, the
optimal cofactor utilization strategy is modulated by other factors
(e.g., oxygen availability), reflecting shifts in redox balance and energy
requirements. Consequently, tailoring cofactor exchange to the spe-
cific condition may be important for optimizing production perfor-
mance. Although engineering or designing enzymes with specific
cofactor preferences is challenging, recent advances in machine
learning are expected to facilitate the enzyme engineering and
design53–55. In this context,wepresentmetabolic engineering strategies
that employ cofactor swapping for the production of 235 bio-based
chemicals (Supplementary Data 11–13).

While our in silico simulations were designed to predict engi-
neering strategies (i.e., the addition of heterologous reactions and
cofactor exchanges) to improve YT of chemical production, we also
found these predicted strategies enhanced YA of chemical production
(Supplementary Note 2). This indicates that the resource presented in
this study have practical applicability, potentially leading to more
efficient microbial production processes.

Rewiring metabolic fluxes toward target chemicals
Although a high theoretical yield of a biosynthetic pathway can indicate
its maximum potential efficiency, the actual metabolic flux toward the
target chemical does not necessarily correlate with the theoretical yield.
Therefore, constructing an effective microbial cell factory requires
rewiring metabolic fluxes toward the target chemical, rather than solely
relying on biosynthetic pathwayswith high theoretical yields. To suggest
metabolic rewiring strategies for chemicals,we conductedfluxvariability
scanning based on enforced objective function (FVSEOF)56,57 and
iBridge56,57 to predict metabolic reactions to be up-regulated or down-
regulated to enhance the production fluxes of target chemicals. Initially,
FVSEOFanalysiswasperformed for eachchemical productionusingeach
GEM of the host strains (Supplementary Data 14–18). A metabolic reac-
tion was considered an up-regulation candidate if its flux showed a
positive Pearson correlation with the target chemical production flux
(see Online Methods). To provide general engineering strategies for
chemical production,we analyzed target reactionprofiles, which are sets
of metabolic reactions predicted to be up-regulation targets, for 272
metabolic pathways leading to the biosynthesis of 235 chemicals (Fig. 4).
Hierarchical clustering of these reaction profiles suggests that target
chemicals within the same cluster share common engineering strategies.
For instance, isoprenoids andmetabolites in the isoprenoid biosynthetic
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pathways formed a distinct cluster (cluster A in Fig. 4). In this cluster,
metabolic reactions within the isopentenyl diphosphate biosynthetic
pathways, as well as those in the oxidative pentose phosphate pathway
(glucose 6-phosphate dehydrogenase, 6-phosphogluconolactonase, and
phosphogluconate dehydrogenase) and lower glycolysis (glycer-
aldehyde-3-phosphate dehydrogenase, enolase, and pyruvate dehy-
drogenase), were predicted to be up-regulation targets for 20
biosynthetic pathways in cluster A. This highlights the importance of
enhancing metabolic fluxes toward key precursor production (acetyl-
CoA and isopentenyl diphosphate) and NADPH production to meet the
high cofactor demand for isoprenoid production.

Metabolic flux optimization strategies can vary depending on the
target chemicals, even if they share common precursors. For example,
aromatic compounds derived from D-erythrose 4-phosphate were
grouped into two clusters, cluster I and J (SupplementaryFig. 17).While
the chorismate biosynthetic pathway was predicted to be an up-
regulation target for both clusters, the oxidative pentose phosphate
pathway was exclusively predicted for 30 biosynthetic pathways in
cluster I, and the TCA cycle (citrate synthase, aconitase, 2-oxoglutarate
dehydrogenase, succinate dehydrogenase, and fumarase) was exclu-
sively predicted for 13 biosynthetic pathways in cluster J. This suggests
that, despite sharing the sameprecursor, the engineering strategies for
different chemicals can vary considerably, emphasizing the need for
tailored metabolic engineering approaches to optimize metabolic
fluxes for each target chemical.

Similarly, iBridge analysis was conducted for each chemical pro-
duction in each GEM of the host strains to predict reactions to be

regulated, providingmetabolic engineering strategies complementary
to those from FVSEOF (Supplementary Data 19–23). It is important to
note that these two algorithms capture different aspects of metabolic
networks. Specifically, FVSEOF identifies reactions whose fluxes exhi-
bit a strong positive correlation with the target production flux,
thereby robustly predicting up-regulation targets. In contrast, iBridge
leverages a metabolite-centric analysis based on flux covariances,
enabling the identification of both up- and down-regulation targets
that may bemissed by FVSEOF. For example, hierarchical clustering of
reaction profiles from iBridge showed that pyruvate kinase, not pre-
dicted by FVSEOF, was predicted as an up-regulation target for iso-
prenoids and metabolites in the isoprenoid biosynthetic pathways in
cluster A (Fig. 5). As another example, aromatic compounds derived
from D-erythrose 4-phosphate formed a distinct clade, cluster B
(Fig. 5). In this cluster, 3-deoxy-D-arabino-heptulosonate 7-phosphate
synthetase and transaldolase were predicted as up-regulation targets,
where 3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase was
also predicted by FVSEOF while transaldolase was unique to iBridge.
iBridge also provided down-regulation targets not predicted by
FVSEOF. For instance, phosphoglycerate dehydrogenase was pre-
dicted as a down-regulation target for cluster D, which includes
pyruvate-derived chemicals (e.g., L-leucine, L-valine, isobutanol, iso-
valerate) and acetyl-CoA-derived chemicals (e.g., butyrate, hexanoate,
octanoate, propan-2-ol). Similarly, phosphoenolpyruvate carboxylase
was predicted as a down-regulation target for cluster E, which includes
pyruvate-derived chemicals (e.g., acetoin, 2,3-butaneiol, propionate,
isopentane) (Fig. 5). These differences highlight that while some

Fig. 3 | Improved YT of chemical production via cofactor exchange.
a Improvement of YT of mevalonic acid production by exchanging the native
cofactor (NAD) of glyceraldehyde 3-phosphate dehydrogenase with NADP.
b Improvement of YT of putrescine production by exchanging the native cofactor
(NADPH) of glyceraldehyde 3-phosphate dehydrogenase with NADH. Blue arrows
represent cofactor swapped reactions. c Flux-sum differences of metabolites
between the native pathway and the pathway with cofactor-swapped glycer-
aldehyde 3-phosphate dehydrogenase for YT calculation. Metabolites are sorted in

descending order of flux-sum decrease. d Flux-sum differences of metabolites
between the native pathway and the pathway with cofactor-swapped glutamate
dehydrogenase for YT calculation. Metabolites are sorted in descending order of
flux-sum decrease. Flux values in parentheses are the lower and upper bounds of
the FVA results when maximizing the target chemical production flux. FVA results
for native pathways and pathways with cofactor swapped reactions are in black and
blue, respectively. Abbreviations of metabolites and reactions are available in
Supplementary Data 24. Source data are provided as a Source Data file.
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Fig. 4 | Metabolic pathways for bio-based chemicals with cluster groups pre-
dicted bymetabolic reaction profiles using FVSEOF.Metabolic reaction profiles,
representing the types of predicted metabolic reactions to be up-regulated for
improved chemical production, were analyzed across 272 metabolic pathways
which lead to the production of 235 chemicals. Pairwise similarities of metabolic
reaction profiles were calculated using cosine similarity. Chemicals with similar

metabolic reaction profiles were grouped into distinct clusters (Supplementary
Fig. 18), and each chemical was colored according to the cluster it belongs to.When
multiple pathways for a chemical were available and their clusters differ, both
clusters are denoted. The simulation was performed for E. coli under aerobic
conditions with D-glucose as the sole carbon source. Metabolic pathways for che-
micals in each cluster are available in Supplementary Figs. 19–28.
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Fig. 5 | Metabolic pathways for bio-based chemicals with cluster groups pre-
dicted bymetabolic reaction profiles using iBridge.Metabolic reaction profiles,
representing the types of predicted metabolic reactions to be up- and down-
regulated for improved chemical production, were analyzed across 272 metabolic
pathways which lead to the production of 235 chemicals. Pairwise similarities of
metabolic reaction profiles were calculated using cosine similarity. Chemicals with

similar metabolic reaction profiles were grouped into distinct clusters (Supple-
mentary Fig. 29), and each chemical was colored according to the cluster it belongs
to. When multiple pathways for a chemical were available and their clusters differ,
both clusters are denoted. The hierarchical clustering heatmap of metabolic
reaction profiles andmetabolic pathways for chemicals in each cluster are available
in Supplementary Figs. 30–35.
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engineering targets were commonly predicted by both approaches,
each algorithm captures distinct metabolic features. Consequently,
the complementary use of FVSEOF and iBridge enriches our resource
by providing a broader set of potential engineering strategies tailored
to specific chemicals (Supplementary Data 14–23).

Discussion
Planning a metabolic engineering project necessitates an extensive
search through the entire decision-making process, including the
selection of target chemicals, host strains, and pathways to be engi-
neered. Finding an optimal strategy for the project is challenging
without systematically exploring the vast metabolic space. To aid the
initiation of a metabolic engineering project, we provide a compre-
hensive evaluation of the capabilities of microbial cell factories. The
maximum yield of a chemical indicates how efficiently a biosynthesis
pathway can transform a carbon source into the target chemical,
thereby guiding metabolic engineers in selecting the most optimal
host strain by comparing the maximum yields across different strains.

In this study, we calculated the YT and YA of 235 bio-based che-
micals infive representative host strains formetabolic engineering (i.e.,
B. subtilis, C. glutamicum, E. coli, P. putida, and S. cerevisiae). It should
be noted that the development of genome engineering tools for non-
model organisms increasingly enables theuseof non-traditional strains
for metabolic engineering58–60. Therefore, expanding the analysis of
this study to encompass all available genomedata could inspire the use
of less-explored organisms for metabolic engineering as well.

Conventional constraint-based modeling approaches (e.g., FBA)
do not account for gene expression, regulatory network, or allocation
of macromolecules within an organism61–63. Although our study is
limited to calculating the maximum yields of bio-based chemicals
using FBA, integrating multi-scale mechanisms will allow for a more
accurate calculation of the biotechnologically achievable maximum
yields of these chemicals. Moreover, since we neglected the target
chemical-specific transport reactions in our analysis, further char-
acterization and inclusion of these exporters will enablemore accurate
yield calculations. Recent advancements in metabolic modeling have
highlighted the importance of integrating enzyme kinetics and pro-
teome constraints to understand the metabolism of microorganisms.
Although proteome-integrated GEMs offer valuable insights under
specific experimental conditions, their applicability is limited when
exploring diverse environmental and substrate conditions. To assess
the potential impact of such constraints on maximum yields, we
compared themaximumyields obtained from iML1515, aGEMofE. coli,
and its enzyme-constrained counterpart, eciML1515 (Supplementary
Note 1)64. While the magnitude of maximum yields from the enzyme-
constrained model can vary, the overall trends and distributions were
statistically indistinguishable. These findings demonstrate that while
enzyme constraints could provide a more realistic value of maximum
yields, the general trends across conditions remain consistent. Thus,
the current GEMs provide robust results for exploring metabolic
capacities over a wide range of conditions, although further incor-
poration of enzymatic information continues to be a valuable tool
when more precise, condition-specific yield calculations are required.

We also proposed engineering strategies to enhance the innate
metabolic capacities of microbial cell factories or to rewire their
metabolism toward target chemical production. To identify hetero-
logous reactions for introduction into a microbial cell factory, we
utilized and curated a universal model that accounts for all reported
metabolic reactions. It is evident that the search of heterologous
reactions is limited by the quality and quantity of the universal model.
As most currently available GEMs have been reconstructed using
highly curated reference GEMs or established reaction databases, the
universal model is constrained by limited knowledge of biological
reactions rather than reflecting the extensive metabolic space of nat-
ure. Developing GEM reconstruction pipelines that directly extract

specific metabolic reactions from genomes would enable the
exploration of more diverse and plausible metabolic engineering
strategies. Altogether, the resources showcase 42,976 cases detailing
the capacities of host strains for 235 bio-based chemicals under dif-
ferent aeration conditions using different carbon sources (5440 cases
for B. subtilis, 9792 cases for C. glutamicum, 11,424 cases for E. coli,
3264 cases for P. putida, and 13,056 cases for S. cerevisiae), alongside
1,925,500cases detailing engineering strategies (784,774heterologous
reaction targets + 32,867 cofactor exchange targets + 613,863 targets
identified by FVSEOF + 493,996 targets identified by iBridge). These
resources provided in this study will be useful for selecting a host
strain, improving innate metabolic capacity by constructing more
efficient metabolic pathways through the introduction of hetero-
logous metabolic reactions and cofactor exchanges, and identifying
target reactions for up- and down-regulation to enhance the bio-based
production of chemicals.

Selecting the production strain needs to consider various factors,
such as growth rate, maximum achievable or optimal/desirable cell
concentration, culture condition (e.g., temperature, pH, nutritional
requirement, and medium cost), ease of product purification, GRAS
status, and others, in addition to the maximum theoretical and
achievable yields presented in this study. While the presented max-
imum yields alone do not capture all dynamic aspects such as growth
kinetics and process-specific conditions, they provide a valuable
approximation for assessing the inherent metabolic capacity of dif-
ferent strains. As such, this resource serves as anessential reference for
narrowing down candidate strains for further experimental validation.
Moreover, when combined with additional criteria that reflect the
conditions of interest, such as the high productivity achieved in fed-
batch fermentations driven by rapid cell growth, the resource can
guide strain selection and further cell factory design. Although our
approach does not offer a complete solution, it will play an essential
role in advancing towards the development of high-performing
microbial cell factories.

Methods
Model construction
GEMs containing metabolic pathways for bio-based chemicals were
constructed by introducing metabolic reactions of the biosynthetic
pathways into previously reported GEMs of representative industrial
hosts: B. subtilis iYO84465, C. glutamicum iCW77366, E. coli iML151567, P.
putida iJN146368, and S. cerevisiae Yeast869. To obtain basic information
about the heterologous reactions to introduce, the metabolic reactions,
which were compiled in a previously published metabolic map34, were
obtained fromtheRheadatabase35. Themass- andcharge-balancesof the
reactions were manually curated. For 235 bio-based chemicals in the
metabolic map, overall reactions and pathways toward the biosynthesis
of the chemical from key metabolites (i.e., 2-oxoglutarate, 3-phospho-D-
glycerate, acetyl-CoA, D-erythrose 4-phosphate, D-glucose 6-phosphate,
D-glyceraldehyde 3-phosphate, oxaloacetate, and pyruvate) were identi-
fied. Based on the identified biosynthetic pathways, GEMs were con-
structed by introducing required heterologous reactions for each
chemical production into the aforementioned five template GEMs. All
reactions and metabolites were curated to have consistent BiGG IDs
when possible38. To calculate the metabolic capacity for each target
chemical production, an exchange reaction, which exports the target
chemical from the cytosol to extracellular space, was added in theGEMs.
If multiple pathways have been reported for a single target chemical
production, a GEM was constructed separately for each biosynthetic
pathway. For the construction GEMs with one-carbon assimilation
pathways, the following reactions are added if not included in the ori-
ginal GEMs: alcohol dehydrogenase (methanol), hexulose-6-phosphate
synthase, and phosphohexulose isomerase for RuMP cycle; formate
dehydrogenase (NAD), formate dehydrogenase (NADP), formate-
tetrahydrofolate ligase, and glycine cleavage system (bidirectional) for
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rGly pathway; ribulose-bisphosphate carboxylase, phosphoribulokinase
and formate dehydrogenase (NAD) for CBB cycle.

Calculation of maximum theoretical yields and maximum
achievable yields
To analyze the metabolic capacity for target chemical production, YT

and YA of each bio-based chemical in the five representative industrial
host strains (i.e., B. subtilis, C. glutamicum, E. coli, P. putida, and S.
cerevisiae) were calculated. Using the default minimal media compo-
sition of eachGEMconstructed in this study, YT and YAwere calculated
using FBA70. Each of nine carbon substrates (i.e., L-arabinose, D-fruc-
tose, D-galactose, D-glucose, D-xylose, glycerol, sucrose, formate, and
methanol) was used as a single carbon source in the simulation. To
simulate other carbon sources, we scaled the carbon source uptake
rate proportionally based on the number of carbons in the carbon
source relative to D-glucose, thedefault carbon source in theGEMs. For
anaerobic andmicroaerobic conditions, the oxygen uptake rates were
constrained to be less than or equal to 0mmol gDCW-1 h-1 and
0.5mmol gDCW-1 h-1, respectively71. The biomass production equation,
NGAM requirement, and reaction directions of Yeast8 were curated to
enable simulation under anaerobic and microaerobic conditions69,72.
The flux of the target exchange reaction, which extracts the target
chemical from the cytosol, was maximized as an objective function
using loopless FBA simulation. The exchange reaction flux was divided
by the carbon source uptake rate to calculate the yields. Because YT

does not account for the requirements of NGAM, the lower bound for
NGAM was set to zero. On the other hand, to calculate YA the lower
bound for NGAM was set to the default value in each GEM. Addition-
ally, 10% of the maximum biomass production rate was used as the
lower bound of biomass production to account for the minimum cell
growth of the microbial cell factories when calculating YA. As iCW773
has no requirement for NGAM, 3.2mmol gDCW-1 h-1 was used as the
lower bound for ATP maintenance requirement reactions in C. gluta-
micum GEMs, according to a previous C. glutamicum GEM73. For bio-
based chemicals with multiple biosynthetic pathways, the pathway
with the highest yield value was used for comparison of the maximum
yields between carbon sources or host strains. Yield calculations were
performed for carbon sources that a host strain can metabolize in
native pathways. Since B. subtilis subsp. subtilis str. 168 and P. putida
KT2440 are aerobic strains, the yields of iYO844 and iJN1463 derivative
GEMs were calculated only for aerobic conditions. One-carbon
assimilation pathways were also analyzed only for aerobic condi-
tions. Construction of the linear programming problem and solving
the problem were performed using cobrapy package74 with Gurobi
Optimizer (Gurobi Optimization Inc., Houston TX) in Python envir-
onment (Python Software Foundation, Delaware, United States).

Flux-sum analysis and flux variability analysis
Flux distributions were calculated using parsimonious FBA before
conducting the flux-sum analysis75. Flux-sum analysis was performed
by summing the incoming or outgoing fluxes of each metabolite in a
GEMof interest76. Differences between theflux-sumof eachmetabolite
in the flux distributions of the native pathway and the pathway with
introduced heterologous reactions were calculated. FVA was per-
formed using loopless solutions77,78.

Universal model construction
The metabolic capacity of a strain is constrained by its overall meta-
bolic reactions. To systematically identify candidate reactions that
could improve metabolic capacity for target chemical production, a
universal model was constructed. This universal model, derived from
the BiGG database38, was curated to contain only mass- and charge-
balanced reactions. Reactions in BiGG universal model that involved
metabolites without annotation formass and charge annotations were
removed. Annotation data were retrieved from the CarveMe universal

model and the five template microorganismGEMs used in this study79.
Reactions from the CarveMe universal model and the template
microorganism GEMs were added to the universal model if the reac-
tions had the necessary annotation data. Finally, reactions involving
metabolites in compartments other than the cytosol, periplasm, and
extracellular space were removed, resulting in a universal model
comprising 3814metabolites and 6846 reactions. The universal model
was manually curated to correct incorrect reaction directions.

Identification of yield-improving heterologous reactions for
target chemical production
Heterologous reactions that improve maximum yields of target che-
mical production were identified. For a GEM that produces a given
target chemical, the following procedures were performed sequen-
tially. To analyze the improvement of YT, NGAMwas neglected (i.e., the
lower bound of ATPM reaction was set to zero). Among metabolic
reactions in the universal model that are not in the target GEM, those
occurring in the cytosol were added. The target GEMwas then used to
solve mixed-integer linear programming (MILP), which identifies
metabolic reactions required for improving YT.

min
X

u2U
yu

s:t:
X

j2M
Si, j � vj =0,8i 2 N ð1Þ

vj ≤ vj,ub,8j 2 M ð2Þ

vj ≥ vj, lb, 8j 2 M ð3Þ

vu ≤ 1000 � yu,8u 2 U ð4Þ

vu ≥ � 1000 � yu,8u 2 U ð5Þ

yu = y
+
u + y�u ,8u 2 U ð6Þ

vu = v
+
u � v�u , 8u 2 U ð7Þ

v+
u ≥0, 8u 2 U ð8Þ

v�u ≥0, 8u 2 U ð9Þ

v+
u ≤ 1000 � y+

u ,8u 2 U ð10Þ

v�u ≤ 1000 � y�u , 8u 2 U ð11Þ

v+
u ≥ ϵ � y+

u ,8u 2 U ð12Þ

v�u ≥ ϵ � y�u ,8u 2 U ð13Þ

X

u2U
yu ≤ L ð14Þ

vtarget ≥ Jmax ð15Þ
In the aboveMILP, themeaning of the variables are as follows: v, a

flux of a metabolic reaction; y, a binary variable whether the
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corresponding reaction from the universal model should be active or
not; Si, j, a coefficient of metabolite i which participates in metabolic
reaction j; subscript ub, upper bound of a metabolic reaction; sub-
script lb, lower bound of ametabolic reaction; ϵ, a minimum threshold
which ensures the activity of the candidate metabolic reaction; L, a
limit of the number of metabolic reactions to be added in the target
GEM; N, a set of metabolites in the target GEM; M, a set of metabolic
reactions in the target GEM; U, a set of metabolic reactions from the
universal model; Jmax, the flux of target chemical producing reaction
when the YT was achieved. The constraint (1) makes mass balance be
validated. Constraints (2) and (3) are for the innate constraints for
metabolic reactions such as the thermodynamic, the limit of carbon
substrate uptake. Constraints (4-13) identify candidate reactions from
the universal model. If a binary variable is on, the corresponding
metabolic reaction should be added to the target GEM to improve the
YT. Here we used 0.001 as a value for ϵ. Constraint (14) limits the
number of reactions to be added to the target GEM.We set the number
of reactions to be added to three in this study. Constraint (15) ensures
that the added metabolic reaction should make the target production
flux be improved, which subsequently makes improved YT. To analyze
improved YT, Jmax was sequentially decreased from 1.5-fold of the
vtarget at YT to the native vtarget at YT in steps of 0.01-fold. Reactions
from the universal model that formed infeasible cycles in the target
GEMs were manually curated. The simulation was performed until no
additional reaction sets were predicted.

Identification of yield-improving cofactor exchange for target
chemical production
The identification of cofactor exchange was also performed for all of
the constructed chemical-producing models. The default setting for
the GEM simulation is the same as that used for identifying hetero-
logous reactions. NADH (or NADPH) participating reactions were
duplicatedwith the cofactor changed toNADPH (or NADH). The target
GEM was used to solve a MILP which identifies sets of metabolic
reactions that improve the YT when the participating cofactors are
exchanged.

min
X

c2C
yc

s:t:
X

j2M
Si, j � vj =0,8i 2 N ð16Þ

vj ≤ vj,ub,8j 2 M ð17Þ

vj ≥ vj, lb, 8j 2 M ð18Þ

vc ≤ 1000 � yc,8c 2 C ð19Þ

vc ≥ � 1000 � yc,8c 2 C ð20Þ

sc + tc = 1, 8c 2 C ð21Þ

tc ≤ yc,8c 2 C ð22Þ

vtarget ≥ Jmax ð23Þ

X

c2C
yc ≤ L ð24Þ

In the above MILP, the meaning of the variables are as follow: v, a
flux of a metabolic reaction; y, a binary variable whether the corre-
sponding reaction should be active or not; s, a binary variable for the
original cofactor participating reaction; t, a binary variable for the
cofactor exchanged reaction; Si, j, a coefficient of metabolite i which
participates in metabolic reaction j; subscript ub, upper bound of a
metabolic reaction; subscript lb, lower bound of a metabolic reaction;
L, the upper limit for the number of cofactor swapping; N, a set of
metabolites in the target GEM; M, a set of metabolic reactions in the
target GEM; C, a set of metabolic reactions which NADH or NADPH
participate in; Jmax, the flux of target chemical producing reaction
when the YT was achieved. The constraint (16) makes mass balance be
validated. Constraints (17) and (18) are for the innate constraints for
metabolic reactions such as the thermodynamic, the limit of carbon
substrate uptake. Constraints (19), (20), (21), and (22) restrict only a
single reaction to being active between the originalmetabolic reaction
and the cofactor exchanged reaction. If a binary variable is on, the
cofactor of the corresponding metabolic reaction should be exchan-
ged to improve the theoretical yield. Constraint (23) ensures that the
cofactor exchange reaction shouldmake the target production rate be
improved, which subsequently makes improved YT. Constraint (24)
limits the number of cofactor exchanges. We limited the number of
reactions to be exchanged to one in this study.

In silico simulation for identification of up- and down-regulation
targets
To achieve a high production yield from a bioprocess, the flux toward
the target chemical production shouldbe sufficiently high. Toenhance
the flux of target chemical producing reaction, iBridge analysis was
performed for all constructed GEMs57. iBridge analysis was performed
to predict up- and down-regulation target reactions to enhance the
production flux of a target chemical. First, parsimonious FBAwas used
to calculate a reference metabolic flux distribution. Based on the
reference flux distribution, ten metabolic flux distributions were cal-
culated with linear minimization of metabolic adjustment, varying the
target chemical production flux from zero to its maximum. The cov-
ariance between each intracellular reaction flux and the target che-
mical production flux was calculated from these ten metabolic flux
distributions. Metabolites were annotated as positive or negative
based on whether the sum of covariances (SoCs) of their outgoing
reactions was positive or negative, respectively. Bridge reactions that
convert negative metabolites to positive metabolites were identified,
and their scoreswere calculated by subtracting the SoCof the negative
metabolites from that of the positive metabolites participating in the
reaction, followed by min-max normalization. The reactions with
scores equal to or greater than 0.5 are regarded as up-regulation tar-
gets, while reactions with scores equal to or smaller than −0.5 are
regarded as down-regulation targets57. FVSEOF analysis was also per-
formed for all constructed GEMs under aerobic conditions56. FVSEOF
analyzes variations in fluxes in response to the enforced target che-
mical production rate. For FVSEOF analysis, ten metabolic flux dis-
tributions were calculated varying the target chemical production flux
from zero to its maximum. From eachmetabolic flux distribution, FVA
was performed for each metabolic reaction. To select reactions that
should be up-regulated, the Pearson correlation between the enforced
target production rate and the minimal flux of an analyzed reaction
was used as a criterion. If the Pearson correlation was positive, the
reaction was selected for up-regulation. Metabolic reactions that have
corresponding gene information were analyzed using iBridge and
FVSEOF.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
Source data are provided with this paper and also available from Fig-
share: https://doi.org/10.6084/m9.figshare.27874275 (ref. 80). Source
data are provided with this paper.

Code availability
The computational pipeline for constructing the resources is available
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